Tohme S, Simmons RL, Tsung A (2017) Surgery for cancer: a trigger for metastases. Cancer Res 77(7):1548–1552
Pierik AS, Leemans CR, Brakenhoff RH Resection margins in head and neck cancer surgery: an update of residual disease and field cancerization. Cancers (Basel):132021
Vallejo R, Hord ED, Barna SA, Santiago-Palma J, Ahmed S (2003) Perioperative immunosuppression in cancer patients. J Environ Pathol Toxicol Oncol 22(2):139–146
Article
PubMed
Google Scholar
Peng YP, Qiu YH (2006) Surgical stress and immunosuppression. Sheng Li Ke Xue Jin Zhan 37(1):31–36
PubMed
Google Scholar
Chen Z, Zhang P, Xu Y, Yan J, Liu Z, Lau WB et al (2019) Surgical stress and cancer progression: the twisted tango. Mol Cancer 18(1):132
Article
PubMed
PubMed Central
Google Scholar
Alazawi W, Pirmadjid N, Lahiri R, Bhattacharya S (2016) Inflammatory and immune responses to surgery and their clinical impact. Ann Surg 264(1):73–80
Article
PubMed
Google Scholar
Wu WK, Sung JJ, Lee CW, Yu J, Cho CH (2010) Cyclooxygenase-2 in tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms. Cancer Lett 295(1):7–16
Article
CAS
PubMed
Google Scholar
Huang H, Benzonana LL, Zhao H, Watts HR, Perry NJ, Bevan C et al (2014) Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br J Cancer 111(7):1338–1349
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito H (1996) Endocrine response to surgical stress. Nihon Geka Gakkai Zasshi 97(9):701–707
CAS
PubMed
Google Scholar
Wall T, Sherwin A, Ma D, Buggy D (2019) Influence of perioperative anaesthetic and analgesic interventions on oncological outcomes: a narrative review. Br J Anaesth 123(2):135–150
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponferrada AR, Orriach JLG, Manso AM, Haro ES, Molina SR, Heredia AF et al (2020) Anaesthesia and cancer: can anaesthetic drugs modify gene expression? Ecancermedicalscience 14:1080. https://doi.org/10.3332/ecancer.2020.1080. eCollection 2020.
Dang Y, Shi X, Xu W, Zuo M (2018) The effect of anesthesia on the immune system in colorectal cancer patients. Can. J Gastroenterol Hepatol 2018:7940603. https://doi.org/10.1155/2018/7940603. eCollection 2018.
Schneemilch CE, Schilling T, Bank U (2004) Effects of general anaesthesia on inflammation. Best Pract Res Clin Anaesthesiol 18(3):493–507
Article
CAS
PubMed
Google Scholar
Kurosawa S, Kato M (2008) Anesthetics, immune cells, and immune responses. J Anesth 22(3):263–277
Article
PubMed
Google Scholar
Hamaya Y, Takeda T, Dohi S, Nakashima S, Nozawa Y (2000) The effects of pentobarbital, isoflurane, and propofol on immediate-early gene expression in the vital organs of the rat. Anesth Analg 90(5):1177–1183
Article
CAS
PubMed
Google Scholar
Eisenstein TK (2019) The role of opioid receptors in immune system function. Front Immunol 10:2904
Article
CAS
PubMed
PubMed Central
Google Scholar
Ondrovics M, Hoelbl-Kovacic A, Fux DA (2017) Opioids: modulators of angiogenesis in wound healing and cancer. Oncotarget 8:25783–25796
Article
PubMed
PubMed Central
Google Scholar
Le-Wendling L, Nin O, Capdevila X (2016) Cancer recurrence and regional anesthesia: the theories, the data, and the future in outcomes. Pain Med 17(4):756–775
PubMed
Google Scholar
Yap A, Lopez-Olivo MA, Dubowitz J, Hiller J, Riedel B (2019) Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia. Can J Anaesth 66(5):546–561
Article
PubMed
Google Scholar
Onuma AE, Zhang H, Gil L, Huang H, Tsung A (2020) Surgical stress promotes tumor progression: a focus on the impact of the immune response. Clin Med 9(12):4096.
Published online 2020 Dec 18. https://doi.org/10.3390/jcm9124096
Neeman E, Ben-Eliyahu S (2013) The perioperative period and promotion of cancer metastasis: New outlooks on mediating mechanisms and immune involvement. Brain Behav Immun 30(Suppl):S32–S40
Article
PubMed
Google Scholar
Margraf A, Ludwig N, Zarbock A, Rossaint J (2020) Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg 131(6):1693–1707
Article
PubMed
Google Scholar
Salo M (1992) Effects of anaesthesia and surgery on the immune response. Acta Anaesthesiol Scand 36(3):201–220
Article
CAS
PubMed
Google Scholar
Okur H, Küçükaydin M, Ustdal KM (1995) The endocrine and metabolic response to surgical stress in the neonate. J Pediatr Surg 30:626–625
Article
CAS
PubMed
Google Scholar
Kong B, Michalski CW, Friess H, Kleeff J (2010) Surgical procedure as an inducer of tumor angiogenesis. Exp Oncol 32(3):186–189
CAS
PubMed
Google Scholar
Lirk P, Fiegl H, Weber NC, Hollmann MW (2015) Epigenetics in the perioperative period. Br J Pharmacol 172(11):2748–2755
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbolina MV (2018) Molecular mechanisms regulating organ-specific metastases in epithelial ovarian carcinoma. Cancers (Basel) 10(11):444. https://doi.org/10.3390/cancers10110444
Bahat G, Saka B, Yenerel M, Yilmaz E, Tascioglu C, Dogan O (2010) Peritoneal seeding and subsequent progression of mantle cell lymphoma after splenectomy for debulking. Curr Oncol 17:78–82
Article
CAS
PubMed
PubMed Central
Google Scholar
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14(3):159–172
Article
CAS
PubMed
Google Scholar
Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198
Article
CAS
PubMed
Google Scholar
Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL, Pytowski B et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66:8065–8075
Article
CAS
PubMed
Google Scholar
Tvedskov TF, Jensen MB, Kroman N, Balslev E (2012) Iatrogenic displacement of tumor cells to the sentinel node after surgical excision in primary breast cancer. Breast Cancer Res Treat 131(1):223–229
Article
PubMed
Google Scholar
Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099
Article
CAS
PubMed
PubMed Central
Google Scholar
Abramovitch R, Marikovsky M, Meir G, Neeman M (1999) Stimulation of tumour growth by wound-derived growth factors. Br J Cancer 79(9-10):1392–1398
Article
CAS
PubMed
PubMed Central
Google Scholar
Antonio N, Bønnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, Steiniche T et al (2015) The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J 34(17):2219–2236
Article
CAS
PubMed
PubMed Central
Google Scholar
Skondra M, Gkioka E, Kostakis ID, Pissimissis N, Lembessis P, Pectasides D et al (2014) Detection of circulating tumor cells in breast cancer patients using multiplex reverse transcription-polymerase chain reaction and specific primers for MGB, PTHRP and KRT19 correlation with clinicopathological features. Anticancer Res 34(11):6691–6699
CAS
PubMed
Google Scholar
Brown DC, Purushotham AD, Birnie GD, George WD (1995) Detection of intraoperative tumor cell dissemination in patients with breast cancer by use of reverse transcription and polymerase chain reaction. Surgery 117:95–101
Article
CAS
PubMed
Google Scholar
Hashimoto M, Tanaka F, Yoneda K, Takuwa T, Matsumoto S, Okumura Y et al (2014) Significant increase in circulating tumour cells in pulmonary venous blood during surgical manipulation in patients with primary lung cancer. Interact Cardiovasc Thorac Surg 18(6):775–783
Article
PubMed
Google Scholar
Peach G, Kim C, Zacharakis E, Purkayastha S, Ziprin P (2010) Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. Br J Cancer 102(9):1327–1334
Article
CAS
PubMed
PubMed Central
Google Scholar
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5):302–317
Article
CAS
PubMed
Google Scholar
Landén NX, Li D, Ståhle M (2016) Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 73(20):3861–3885
Article
PubMed
PubMed Central
CAS
Google Scholar
Dunn IF, Heese O, Black PM (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 50(1-2):121–137
Article
CAS
PubMed
Google Scholar
Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267(2):197–203
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut. 55(1):115–122
Article
CAS
PubMed
PubMed Central
Google Scholar
Im JH, Fu W, Wang H, Bhatia SK, Hammer DA, Kowalska MA et al (2004) Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 64(23):8613–8619
Article
CAS
PubMed
Google Scholar
Amo L, Tamayo-Orbegozo E, Maruri N, Eguizabal C, Zenarruzabeitia O, Riñón M et al (2014) Involvement of platelet-tumor cell interaction in immune evasion. Potential role of podocalyxin-like protein 1. Front Oncol 4:245
Article
PubMed
PubMed Central
Google Scholar
Schlesinger M (2018) Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 11(1):125. https://doi.org/10.1186/s13045-018-0669-2
Ishikawa M, Nishioka M, Hanaki N, Miyauchi T, Kashiwagi Y, Ioki H et al (2009) Perioperative immune responses in cancer patients undergoing digestive surgeries. World J Surg Oncol 7:7
Article
PubMed
PubMed Central
Google Scholar
Kim TH, Rowat AC, Sloan EK (2016) Neural regulation of cancer: from mechanobiology to inflammation. Clin Transl Immunol 5:e78
Article
CAS
Google Scholar
Rosenkrantz Hölmich E, Petring Hasselager R, Tvilling Madsen M, Orhan A, Gögenur I (2020) Long-term outcomes after use of perioperative glucocorticoids in patients undergoing cancer surgery: a systematic review and meta-analysis. Cancers (Basel) 12(1):76. Published online 2019 Dec 27. https://doi.org/10.3390/cancers12010076
Dilley RJ, Schwartz SM (1989) Vascular remodeling in the growth hormone transgenic mouse. Circ Res 65(5):1233–1240
Article
CAS
PubMed
Google Scholar
Mavoungou E, Bouyou-Akotet MK, Kremsner PG (2005) Effects of prolactin and cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46, NKp44 and NKp30). Clin Exp Immunol 139(2):287–296
Article
CAS
PubMed
PubMed Central
Google Scholar
Deitch EA, Bridges RM (1987) Stress hormones modulate neutrophil and lymphocyte activity in vitro. J Trauma 27(10):1146–1154
Article
CAS
PubMed
Google Scholar
Mravec B, Horvathova L, Hunakova L (2020) Neurobiology of cancer: the role of β-adrenergic receptor signaling in various tumor environments. Int J Mol Sci 21(21):7958. https://doi.org/10.3390/ijms21217958
Ilango S, Paital B, Jayachandran P, Padma PR, Nirmaladevi R (2020) Epigenetic alterations in cancer. Front Biosci (Landmark Ed) 25:1058–1109
Article
CAS
Google Scholar
Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity (Edinb) 105(1):4–13
Article
CAS
Google Scholar
Sadahiro R, Knight B, James F, Hannon E, Charity J, Daniels IR et al (2020) Major surgery induces acute changes in measured DNA methylation associated with immune response pathways. Sci Rep 10(1):5743
Article
CAS
PubMed
PubMed Central
Google Scholar
Dengler VL, Galbraith M, Espinosa JM (2014) Transcriptional Regulation by Hypoxia Inducible Factors. Crit Rev Biochem Mol Biol 49(1):1–15
Article
CAS
PubMed
Google Scholar
Ahn GO, Seita J, Hong BJ, Kim YE, Bok S, Lee CJ et al (2014) Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proc Natl Acad Sci U S A 111(7):2698–2703
Article
CAS
PubMed
PubMed Central
Google Scholar
Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389
Article
PubMed
PubMed Central
Google Scholar
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 49(11):1603–1616
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang W, Cai J, Zabkiewicz C, Zhang H, Ruge F, Jiang WG (2017) The effects of anesthetics on recurrence and metastasis of cancer, and clinical implications. World J Oncol 8(3):63–70
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Y, Jiang W, Xie S, Xue F, Zhu X (2020) The Role of Inhaled Anesthetics in Tumorigenesis and Tumor Immunity. Cancer Manag Res 12:1601–1609
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi QY, Zhang SJ, Liu L, Chen QS, Yu LN, Zhang FJ et al (2015) Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. Br J Anaesth 114:825–830 England: © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia For Permissions, please email: journals.permissions@oup.com
Article
CAS
PubMed
Google Scholar
Benzonana LL, Perry NJ, Watts HR, Yang B, Perry IA, Coombes C et al (2013) Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 119(3):593–605
Article
CAS
PubMed
Google Scholar
Zhang W, Shao X (2016) Isoflurane promotes non-small cell lung cancer malignancy by activating the Akt-mammalian target of rapamycin (mTOR) signaling pathway. Med Sci Monit 22:4644–4650
Article
CAS
PubMed
PubMed Central
Google Scholar
Tazawa K, Koutsogiannaki S, Chamberlain M, Yuki K (2017) The effect of different anesthetics on tumor cytotoxicity by natural killer cells. Toxicol Lett 266:23–31
Article
CAS
PubMed
Google Scholar
Ji FH, Wang YL, Yang JP (2011) Effects of propofol anesthesia and sevoflurane anesthesia on the differentiation of human T-helper cells during surgery. Chin Med J (Engl) 124(4):525–529
CAS
Google Scholar
Loop T, Dovi-Akue D, Frick M, Roesslein M, Egger L, Humar M et al (2005) Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 102(6):1147–1157
Article
CAS
PubMed
Google Scholar
Chen RM, Chen TG, Chen TL, Lin LL, Chang CC, Chang HC et al (2005) Anti-inflammatory and antioxidative effects of propofol on lipopolysaccharide-activated macrophages. Ann N Y Acad Sci 1042:262–271
Article
CAS
PubMed
Google Scholar
Helmy SA, Al-Attiyah RJ (2001) The immunomodulatory effects of prolonged intravenous infusion of propofol versus midazolam in critically ill surgical patients. Anaesthesia 56:4–8
Article
CAS
PubMed
Google Scholar
Li R, Liu H, Dilger JP, Lin J (2018) Effect of propofol on breast cancer cell, the immune system, and patient outcome. BMC Anesthesiol 18(1):77
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Jiao H, Jiang Z, Chen R (2020) Propofol inhibits migration and induces apoptosis of pancreatic cancer PANC-1 cells through miR-34a-mediated E-cadherin and LOC285194 signals. Bioengineered 11:510–521
Article
CAS
PubMed
PubMed Central
Google Scholar
Du Q, Liu J, Zhang X, Zhu H, Wei M, Wang S (2018) Propofol inhibits proliferation, migration, and invasion but promotes apoptosis by regulation of Sox4 in endometrial cancer cells. Braz J Med Biol Res 51(4):e6803. https://doi.org/10.1590/1414-431x20176803. Epub 2018 Feb 26
Inada T, Kubo K, Shingu K (2011) Possible link between cyclooxygenase-inhibiting and antitumor properties of propofol. J Anesth 25(4):569–575
Article
PubMed
Google Scholar
Zhou M, Dai J, Zhou Y, Wu J, Xu T, Zhou D et al (2018) Propofol improves the function of natural killer cells from the peripheral blood of patients with esophageal squamous cell carcinoma. Exp Ther Med 16:83–92
PubMed
PubMed Central
Google Scholar
Ai L, Wang H (2020) Effects of propofol and sevoflurane on tumor killing activity of peripheral blood natural killer cells in patients with gastric cancer. J Int Med Res 48(3):300060520904861. https://doi.org/10.1177/0300060520904861.
Brand JM, Schmucker P, Breidthardt T, Kirchner H (2001) Upregulation of IFN-gamma and soluble interleukin-2 receptor release and altered serum cortisol and prolactin concentration during general anesthesia. J Interferon Cytokine Res 21(10):793–796
Article
CAS
PubMed
Google Scholar
Liu S, Gu X, Zhu L, Wu G, Zhou H, Song Y et al (2016) Effects of propofol and sevoflurane on perioperative immune response in patients undergoing laparoscopic radical hysterectomy for cervical cancer. Medicine (Baltimore) 95(49):e5479. https://doi.org/10.1097/MD.0000000000005479.
Tanaka T, Takabuchi S, Nishi K, Oda S, Wakamatsu T, Daijo H et al (2010) The intravenous anesthetic propofol inhibits lipopolysaccharide-induced hypoxia-inducible factor 1 activation and suppresses the glucose metabolism in macrophages. J Anesth 24(1):54–60
Article
PubMed
Google Scholar
Wu KC, Yang ST, Hsia TC, Yang JS, Chiou SM, Lu CC et al (2012) Suppression of cell invasion and migration by propofol are involved in down-regulating matrix metalloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer Res 32:4833–4842
CAS
PubMed
Google Scholar
Zhang L, Wang N, Zhou S, Ye W, Jing G, Zhang M (2012) Propofol induces proliferation and invasion of gallbladder cancer cells through activation of Nrf2. J Exp Clin Cancer Res 31(1):66
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo XG, Wang S, Xu YB, Zhuang J (2015) Propofol suppresses invasion, angiogenesis and survival of EC-1 cells in vitro by regulation of S100A4 expression. Eur Rev Med Pharmacol Sci 19:4858–4865
PubMed
Google Scholar
Wang Z, Cao B, Ji P, Yao F (2021) Propofol inhibits tumor angiogenesis through targeting VEGF/VEGFR and mTOR/eIF4E signaling. Biochem Biophys Res Commun 555:13–18 United States: © 2021 Elsevier Inc
Article
CAS
PubMed
Google Scholar
Ishikawa M, Iwasaki M, Sakamoto A, Ma D (2021) Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol 21(1):71
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao X, Mi Y, Guo N, Luan J, Xu H, Hu Z et al (2020) The mechanism of propofol in cancer development: An updated review. Asia Pac J Clin Oncol 16(2):e3–e11
Article
PubMed
Google Scholar
Xu Y, Pan S, Jiang W, Xue F, Zhu X (2020) Effects of propofol on the development of cancer in humans. Cell Prolif 53(8):e12867. Published online 2020 Jun 29. https://doi.org/10.1111/cpr.12867
Enlund M, Berglund A, Andreasson K, Cicek C, Enlund A, Bergkvist L (2014) The choice of anaesthetic--sevoflurane or propofol--and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci 119(3):251–261
Article
PubMed
PubMed Central
Google Scholar
Lee JH, Kang SH, Kim Y, Kim HA, Kim BS (2016) Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: a retrospective study. Korean J Anesthesiol 69(2):126–132
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai HC, Lee MS, Lin C, Lin KT, Huang YH, Wong CS et al (2019) Propofol-based total intravenous anaesthesia is associated with better survival than desflurane anaesthesia in hepatectomy for hepatocellular carcinoma: a retrospective cohort study. Br J Anaesth 123(2):151–160
Article
CAS
PubMed
PubMed Central
Google Scholar
Sessler DI, Pei L, Huang Y, Fleischmann E, Marhofer P, Kurz A et al (2019) Recurrence of breast cancer after regional or general anaesthesia: a randomised controlled trial. Lancet 394:1807–1815 England: © 2019 Elsevier Ltd
Article
PubMed
Google Scholar
Ramirez MF, Cata JP (2021) Anesthesia techniques and long-term oncological outcomes. Front 11:788918. https://doi.org/10.3389/fonc.2021.788918. eCollection 2021.
Nishina K, Akamatsu H, Mikawa K, Shiga M, Maekawa N, Obara H et al (1998) The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions. Anesth Analg 86(1):159–165
Article
CAS
PubMed
Google Scholar
Forget P, Collet V, Lavand'homme P, De Kock M (2010) Does analgesia and condition influence immunity after surgery? Effects of fentanyl, ketamine and clonidine on natural killer activity at different ages. Eur J Anaesthesiol 27(3):233–240
Article
PubMed
Google Scholar
Li Y, Shen R, Wen G, Ding R, Du A, Zhou J et al (2017) Effects of Ketamine on Levels of Inflammatory Cytokines IL-6, IL-1β, and TNF-α in the Hippocampus of Mice Following Acute or Chronic Administration. Front Pharmacol 8:139. https://doi.org/10.3389/fphar.2017.00139. eCollection 2017.
Plein LM, Rittner HL (2018) Opioids and the immune system - friend or foe. Br J Pharmacol 175(14):2717–2725
Article
CAS
PubMed
Google Scholar
Boland JW, Pockley AG (2018) Influence of opioids on immune function in patients with cancer pain: from bench to bedside. Br J Pharmacol 175(14):2726–2736
Article
CAS
PubMed
Google Scholar
Beilin B, Martin FC, Shavit Y, Gale RP, Liebeskind JC (1989) Suppression of natural killer cell activity by high-dose narcotic anesthesia in rats. Brain Behav Immun 3(2):129–137
Article
CAS
PubMed
Google Scholar
Pruett SB, Han YC, Fuchs BA (1992) Morphine suppresses primary humoral immune responses by a predominantly indirect mechanism. J Pharmacol Exp Ther 262(3):923–928
CAS
PubMed
Google Scholar
Ninković J, Roy S (2013) Role of the mu opioid receptor in opioid modulation of immune function. Amino Acids 45(1):9–24
Article
PubMed
CAS
Google Scholar
Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R et al (2011) Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol 6(4):442–465
Article
PubMed
PubMed Central
Google Scholar
Hall DM, Suo JL, Weber RJ (1998) Opioid mediated effects on the immune system: sympathetic nervous system involvement. J Neuroimmunol 83(1-2):29–35
Article
CAS
PubMed
Google Scholar
Mellon RD, Bayer BM (1998) Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanism(s) of action. J Neuroimmunol 83(1-2):19–28
Article
CAS
PubMed
Google Scholar
Kelly E, Henderson G, Bailey CP (2018) Emerging areas of opioid pharmacology. Br J Pharmacol 175(14):2715–2716
Article
CAS
PubMed
PubMed Central
Google Scholar
Page GG (2005) Immunologic effects of opioids in the presence or absence of pain. J Pain Symptom Manage 29(5 Suppl):S25–S31
Article
CAS
PubMed
Google Scholar
Martucci C, Panerai AE, Sacerdote P (2004) Chronic fentanyl or buprenorphine infusion in the mouse: similar analgesic profile but different effects on immune responses. Pain. 110(1-2):385–392
Article
CAS
PubMed
Google Scholar
Peng Y, Yang J, Guo D, Zheng C, Sun H, Zhang Q et al (2020) Sufentanil postoperative analgesia reduce the increase of T helper 17 (Th17) cells and FoxP3(+) regulatory T (Treg) cells in rat hepatocellular carcinoma surgical model: A randomised animal study. BMC Anesthesiol 20(1):212
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim R (2018) Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med 16(1):8. https://doi.org/10.1186/s12967-018-1389-7
Sacerdote P, Gaspani L, Rossoni G, Panerai AE, Bianchi M (2001) Effect of the opioid remifentanil on cellular immune response in the rat. Int Immunopharmacol 1(4):713–719
Article
CAS
PubMed
Google Scholar
Janku F, Johnson LK, Karp DD, Atkins JT, Singleton PA, Moss J (2016) Treatment with methylnaltrexone is associated with increased survival in patients with advanced cancer. Ann Oncol 27(11):2032–2038
Article
CAS
PubMed
PubMed Central
Google Scholar
Tedore T (2015) Regional anaesthesia and analgesia: relationship to cancer recurrence and survival. Br J Anaesth 115(Suppl 2):ii34–ii45
Article
PubMed
Google Scholar
Hahnenkamp K, Herroeder S, Hollmann MW (2004) Regional anaesthesia, local anaesthetics and the surgical stress response. Best Pract Res Clin Anaesthesiol 18(3):509–527
Article
CAS
PubMed
Google Scholar
O'Riain SC, Buggy DJ, Kerin MJ, Watson RWG, Moriarty DC (2005) Inhibition of the stress response to breast cancer surgery by regional anesthesia and analgesia does not affect vascular endothelial growth factor and prostaglandin E2. Anesth Analg 100:244–249
Article
CAS
PubMed
Google Scholar
Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP (2014) Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One 9(2):e89563
Article
PubMed
PubMed Central
CAS
Google Scholar
Chamaraux-Tran TN, Mathelin C, Aprahamian M, Joshi GP, Tomasetto C, Diemunsch P et al (2018) Antitumor Effects of Lidocaine on Human Breast Cancer Cells: An In Vitro and In Vivo Experimental Trial. Anticancer Res 38(1):95–105
CAS
PubMed
Google Scholar
Bar-Yosef S, Melamed R, Page GG, Shakhar G, Shakhar K, Ben-Eliyahu S (2001) Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology. 94(6):1066–1073
Article
CAS
PubMed
Google Scholar
Wada H, Seki S, Takahashi T, Kawarabayashi N, Higuchi H, Habu Y et al (2007) Combined spinal and general anesthesia attenuates liver metastasis by preserving TH1/TH2 cytokine balance. Anesthesiology 106:499–506
Article
CAS
PubMed
Google Scholar
Grandhi RK, Lee S, Abd-Elsayed A (2017) The Relationship Between Regional Anesthesia and Cancer: A Metaanalysis. Ochsner J 17(4):345–361
PubMed
PubMed Central
Google Scholar
Xuan W, Hankin J, Zhao H, Yao S, Ma D (2015) The potential benefits of the use of regional anesthesia in cancer patients. Int J Cancer 137(12):2774–2784
Article
CAS
PubMed
Google Scholar
Piegeler T, Votta-Velis EG, Liu G, Place AT, Schwartz DE, Beck-Schimmer B et al (2012) Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology. 117(3):548–559
Article
CAS
PubMed
Google Scholar
Xu ZZ, Li HJ, Li MH, Huang SM, Li X, Liu QH et al (2021) Epidural Anesthesia-Analgesia and Recurrence-free Survival after Lung Cancer Surgery: A Randomized Trial. Anesthesiology 135:419–432 United States: © 2021, the American Society of Anesthesiologists. All Rights Reserved
Article
CAS
PubMed
Google Scholar
Du YT, Li YW, Zhao BJ, Guo XY, Feng Y, Zuo MZ et al (2021) Long-term survival after combined epidural-general anesthesia or general anesthesia alone: follow-up of a randomized trial. Anesthesiology 135:233–245 United States: Copyright © 2021, the American Society of Anesthesiologists. All Rights Reserved
Article
CAS
PubMed
Google Scholar
Lee BM, Singh Ghotra V, Karam JA, Hernandez M, Pratt G, Cata JP (2015) Regional anesthesia/analgesia and the risk of cancer recurrence and mortality after prostatectomy: a meta-analysis. Pain Manag 5(5):387–395
Article
PubMed
PubMed Central
Google Scholar
Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ (2008) Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology. 109(2):180–187
Article
PubMed
Google Scholar
Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI (2006) Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 105(4):660–664
Article
PubMed
Google Scholar
Sessler DI, Ben-Eliyahu S, Mascha EJ, Parat MO, Buggy DJ (2008) Can regional analgesia reduce the risk of recurrence after breast cancer? Methodology of a multicenter randomized trial. Contemp Clin Trials 29(4):517–526
Article
PubMed
Google Scholar
Harris RE, Beebe-Donk J, Doss H, Burr DD (2005) Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review). Oncol Rep 13(4):559–583
CAS
PubMed
Google Scholar
Tsoi KKF, Ho JMW, Chan FCH, Sung JJY (2019) Long-term use of low-dose aspirin for cancer prevention: A 10-year population cohort study in Hong Kong. Int J Cancer 145(1):267–273
Article
CAS
PubMed
Google Scholar
Tomozawa S, Tsuno NH, Sunami E, Hatano K, Kitayama J, Osada T et al (2000) Cyclooxygenase-2 overexpression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer. Br J Cancer 83(3):324–328
Article
CAS
PubMed
PubMed Central
Google Scholar
Okajima E, Uemura H, Ohnishi S, Tanaka M, Ohta M, Tani M et al (2003) Expression of cyclooxygenase-2 in primary superficial bladder cancer tissue may predict risk of its recurrence after complete transurethral resection. Aktuelle Urol 34(4):256–258
Article
CAS
PubMed
Google Scholar
Singh B, Berry JA, Shoher A, Ramakrishnan V, Lucci A (2005) COX-2 overexpression increases motility and invasion of breast cancer cells. Int J Oncol 26(5):1393–1399
CAS
PubMed
Google Scholar
Schack A, Fransgaard T, Klein MF, Gögenur I (2019) Perioperative Use of Nonsteroidal Anti-inflammatory Drugs Decreases the Risk of Recurrence of Cancer After Colorectal Resection: A Cohort Study Based on Prospective Data. Ann Surg Oncol 26(12):3826–3837
Article
PubMed
Google Scholar
Forget P, Bentin C, Machiels JP, Berliere M, Coulie PG, De Kock M (2014) Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery. Br J Anaesth 113(Suppl 1):i82–i87 England: © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia For Permissions, please email: journals.permissions@oup.com
Article
CAS
PubMed
Google Scholar
Moris D, Kontos M, Spartalis E, Fentiman IS (2016) The Role of NSAIDs in Breast Cancer Prevention and Relapse: Current Evidence and Future Perspectives. Breast Care (Basel) 11(5):339–344
Article
Google Scholar
Chen JY, Ko TL, Wen YR, Wu SC, Chou YH, Yien HW et al (2009) Opioid-sparing effects of ketorolac and its correlation with the recovery of postoperative bowel function in colorectal surgery patients: a prospective randomized double-blinded study. Clin J Pain 25:485–489
Article
CAS
PubMed
Google Scholar
Bailard NS, Flores RA (2015) Could opioid sparing, rather than a direct non-steroidal anti-inflammatory drug effect, be responsible for improved survival after conservative breast surgery? Br J Anaesth 114:527
Article
CAS
PubMed
Google Scholar
Wong I, St John-Green C, Walker SM (2013) Opioid-sparing effects of perioperative paracetamol and nonsteroidal anti-inflammatory drugs (NSAIDs) in children. Paediatr Anaesth 23(6):475–495
Article
PubMed
PubMed Central
Google Scholar
Friis S, Nielsen GL, Mellemkjaer L, McLaughlin JK, Thulstrup AM, Blot WJ et al (2002) Cancer risk in persons receiving prescriptions for paracetamol: a Danish cohort study. Int J Cancer 97(1):96–101
Article
CAS
PubMed
Google Scholar
Weiss NS (2016) Use of acetaminophen in relation to the occurrence of cancer: a review of epidemiologic studies. Cancer Causes Control 27(12):1411–1418
Article
PubMed
PubMed Central
Google Scholar
Bruzzone A, Piñero CP, Rojas P, Romanato M, Gass H, Lanari C et al (2011) α(2)-Adrenoceptors enhance cell proliferation and mammary tumor growth acting through both the stroma and the tumor cells. Curr Cancer Drug Targets 11(6):763–774
Article
CAS
PubMed
Google Scholar
Cata JP, Singh V, Lee BM, Villarreal J, Mehran JR, Yu J et al (2017) Intraoperative use of dexmedetomidine is associated with decreased overall survival after lung cancer surgery. J Anaesthesiol Clin Pharmacol 33(3):317–323
Article
PubMed
PubMed Central
Google Scholar
Forget P, Berlière M, Poncelet A, De Kock M (2018) Effect of clonidine on oncological outcomes after breast and lung cancer surgery. Br J Anaesth 121(1):103–104
Article
CAS
PubMed
Google Scholar
Lavon H, Matzner P, Benbenishty A, Sorski L, Rossene E, Haldar R et al (2018) Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br J Anaesth 120(1):188–196
Article
CAS
PubMed
Google Scholar