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Abstract

Background: Goal-directed therapy (GDT) aims to assure tissue perfusion, by optimizing doses and timing of fluids,
inotropes, and vasopressors, through monitoring of cardiac output and other basic hemodynamic parameters.
Several meta-analyses confirm that GDT can reduce postoperative complications. However, all recent evidences
focused on high-risk patients and on major abdominal surgery.

Objectives: The aim of the present meta-analysis is to investigate the effect of GDT on postoperative complications
(defined as number of patients with a least one postoperative complication) in different kind of surgical procedures.

Data sources: Randomized controlled trials (RCTs) on perioperative GDT in adult surgical patients were included.
The primary outcome measure was complications, defined as number of patients with at least one postoperative
complication. A subgroup-analysis was performed considering the kind of surgery: major abdominal (including also
major vascular), only vascular, only orthopedic surgery. and so on.

Study appraisal and synthesis methods: Meta-analytic techniques (analysis software RevMan, version 5.3.5,
Cochrane Collaboration, Oxford, England, UK) were used to combine studies using odds ratios (ORs) and 95%
confidence intervals (CIs).

Results: In 52 RCTs, 6325 patients were enrolled. Of these, 3162 were randomized to perioperative GDT and 3153
were randomized to control. In the overall population, 2836 patients developed at least one complication: 1278
(40%) were randomized to perioperative GDT, and 1558 (49%) were randomized to control. Pooled OR was 0.60
and 95% CI was 0.49–0.72. The sensitivity analysis confirmed the main result.
The analysis enrolling major abdominal patients showed a significant result (OR 0.72, 95% CI 0.59–0.87, p = 0.0007,
31 RCTs, 4203 patients), both in high- and low-risk patients. A significant effect was observed in those RCTs
enrolling exclusively orthopedic procedures (OR 0.53, 95% CI 0.35–0.80, p = 0.002, 7 RCTs, 650 patients. Also
neurosurgical procedures seemed to benefit from GDT (OR 0.40, 95% CI 0.21–0.78, p = 0.008, 2 RCTs, 208 patients).
In both major abdominal and orthopedic surgery, a strategy adopting fluids and inotropes yielded significant
results. The total volume of fluid was not significantly different between the GDT and the control group.
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Conclusions and implications of key findings: The present meta-analysis, within the limits of the existing data,
the clinical and statistical heterogeneity, suggests that GDT can reduce postoperative complication rate. Moreover,
the beneficial effect of GDT on postoperative morbidity is significant on major abdominal, orthopedic and
neurosurgical procedures. Several well-designed RCTs are needed to further explore the effect of GDT in different
kind of surgeries.
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Background
Goal-directed therapy (GDT) is a strategy that aims to
optimize dose and timing of fluids, inotropes, and vaso-
pressors, through monitoring of cardiac output and
other basic hemodynamic parameters, in order to assure
an adequate tissue perfusion and oxygen delivery. In the
last 30 years, many authors have reported that GDT
adoption can reduce the incidence of morbidity, and in
some studies, mortality [1–3]. Several meta-analyses [1,
4] support its use in high-risk patients, and a recent trial
reports a significant effect also in low–moderate-risk pa-
tients [5]. However, all recent meta-analyses focused
mainly on major abdominal surgery and on high-risk pa-
tients [6–8], while the evidence is less clear in other sur-
gical procedures.
The aim of the present updated meta-analysis is to in-

vestigate the effect of GDT on postoperative complica-
tions in different kind of surgical procedures. Moreover,
we analyzed the amount of crystalloids and colloids ad-
ministered during the intraoperative period in order to
verify if a GDT approach is useful to control the total
amount of administered fluids.

Methods
Eligibility criteria
RCTs were selected according to the following inclusion
criteria [9]:

� Types of participants. Adult patients (ages 18 years
and older) undergoing major non cardiac surgery
were considered. Studies involving mixed
populations of critically ill, nonsurgical patients, or
postoperative patients with sepsis or organ failure
were excluded.

� Types of interventions. GDT was defined as
monitoring and manipulation of hemodynamic
parameters to reach normal or supranormal values
by fluid infusion alone or in combination with
inotropic therapy in the perioperative period within
8 h after surgery. Studies including late
hemodynamic optimization treatment were
excluded.

� Types of comparisons. Trials comparing the
beneficial and harmful effects of GDT versus
standard hemodynamic therapy were considered.

RCTs with no description or no difference in
optimization strategies between groups, as well as
RCTs in which therapy was titrated to the same goal
in both groups or was not titrated to predefined
end-points were excluded.

� Types of outcome measures. The primary outcome
measure was complications, defined as number of
patients with at least one postoperative
complication. Postoperative complications include
minor and major cardiac, renal, gastrointestinal,
infective and respiratory ones. Mortality was not
included. Sensitivity analysis was planned including
only low risk of bias trials (see below). Studies were
splitted considering the kind of surgery (i.e., major
abdominal, orthopedic, vascular, and so on).
Moreover, studies were divided on the basis of the
strategy adopted (i.e., only fluids or fluids and
inotropes). In those studies that used fluids alone,
the volume of crystalloids and of colloids, as well as
the total volume of fluids received during the GDT
period were also analyzed.

� Types of studies. RCTs on perioperative GDT in
surgical patients were included. No language,
publication date, or publication status restrictions
were imposed.

Information sources
Different search strategies (last update July 2021) were
performed to retrieve relevant randomized controlled
trials (RCTs) by using MEDLINE, The Cochrane Library
and EMBASE databases. No date restriction was applied
for MEDLINE and The Cochrane Library databases,
while the search was limited to 2008–2021 for EMBASE
database [10]. Additional RCTs were searched in The
Cochrane Library and the Database of Abstracts of Re-
views of Effects (DARE) databases and in the reference
lists of previously published reviews and retrieved arti-
cles. Other data sources were hand-searched in the an-
nual proceedings (2008–2020) of the Society of Critical
Care Medicine, the European Society of Intensive Care
Medicine, the Society of Cardiovascular Anesthesiolo-
gists, the Royal College of Anaesthetists, the American
Society of Anesthesiologists. In order to reduce publica-
tion bias, abstracts were searched [11]. Publication lan-
guage was not a search criterion.
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Search terms
Trials selection was performed by using the following
search terms: randomized controlled trial, controlled
clinical trial, surgery, goal-directed, goal oriented, goal
target, cardiac output, cardiac index, DO2, oxygen con-
sumption, cardiac volume, stroke volume, fluid therapy,
fluid loading, fluid administration, optimisation,
optimization, supranormal. The search strategies used
for the MEDLINE, The Cochrane Library, and EMBASE
databases are reported in Supplementary material 1.

Study selection
Two investigators (FP, LT) examined at first each title
and abstract to exclude clearly irrelevant studies and to
identify potentially relevant articles. Other two investiga-
tors (MG, NB) independently determined eligibility of
full-text articles retrieved. The names of the author, in-
stitution, journal of publication and results were un-
known to the two investigators at this time.

Data abstraction and study characteristics
Data were independently collected by two investigators
(GB, SR), with any discrepancy resolved by re-inspection
of the original article. To avoid transcription errors, the
data were input into statistical software and rechecked
by different investigators (AC, NB).

RCT data gathered
Data abstraction included surgical risk (defined by the
authors on the basis of POSSUM score [12], ASA
physical status classification, age > 60 years, pre-
operative morbidity, and type of surgery), type of sur-
gery (i.e., elective or emergent, abdominal, thoracic,
vascular), anesthesiological management, and
hemodynamic goal-directed therapy (end-points,
therapeutic intervention, and monitoring tools). The
volume of crystalloids and of colloids, as well as the
total volume of fluid received during the GDT period
was also analyzed.

16382 records identified
through database searching

3750 records after duplicates removal

308 records screened

13 additional records 
identified through other 

sources

52 studies included in
qualitative synthesis

148 full-text articles assessed for 
eligibility

96 full-text articles excluded:
•33: hemodynamic optimization 
titrated to the same end-point or 
not titrated to predefined end 
points, or no difference between 
groups in the optimization 
protocol;
•10: mixed population of critically 
ill, not surgical patients, with 
already established sepsis or 
organ failure and undergoing late 
optimization;
•40: no data on primary outcome 
(patients with complications)
•1: only protocol;
•11 cardiac surgery;

160 records excluded

Fig. 1 Flow chart summarizing the studies selection procedure for the meta-analysis. RCT, andomized controlled trial
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Table 1 Characteristics of included studies

Author, year, country Surgery Goal-directed therapy
(tools and goals)

Modality of
optimization

Ackland et al. [19]
2015, Europe

Major elective abdominal surgery Lidco plus;
SV < 10%, DO2 > 600 L∙min−1∙m−2

Fluids and inotropes

Arslan-Carlon et al. [20]
2020, USA

Open radical cystecctomy FloTrac/Vigileo;
SV < 10%
CI ≥ 2.5 L min−1 m−2

Fluids

Bahlmann et al. [21]
2019, Europe

Tranthoracic eophageal resection FloTrac/Vigileo;
SV < 10%
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Bartha et al. [22]
2018, Europe

Orthopaedic Lidco;
SV < 10%, DO2 > 600 L min−1 m−2

Fluids and inotropes

Bender et al. [23]
1997, USA

Elective aortic and vascular PAC;
CI ≥ 2.8 L min−1 m−2,
8 ≤ Pcwp ≤ 14 mmHg,
SVR ≤ 1100 dyne s cm−5

Fluids and inotropes

Benes et al. [24]
2010, Europe

Elective abdominal FloTrac/Vigileo;
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Bisgaard et al. [25]
2013, Europe

Elective peripheral vascular Lidco;
SV < 10%, DO2 > 600 L min−1 m−2

Fluids and inotropes

Brandstrup et al. [26]
2012, Europe

Elective abdominal Esophageal Doppler
SV increase > 10%

Fluids

Broch et al. [27]
2016, Europe

Major abdominal Nexfin system;
PPV > 10%
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Calvo Vecino et al. [5]
2018, Spain

Major abdominal, urological, gynaecological, or
orthopedic
surgery

(CardioQ, EDM;
SV increase > 10%
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Cecconi et al. [28]
2011, Europe

Orthopaedic FloTrac/Vigileo;
SV < 10%, DO2 > 600 L min−1 m−2

Fluids and inotropes

Challand et al. [29]
2013, Europe

Major abdominal Esophageal Doppler
SV increase of 10%

Fluids

Colantonio et al. [30]
2015, Europe

Cytoreductive surgery FloTrac/Vigileo;
CI ≥ 2.5 L min−1 m−2

SVI > 35 ml∙min−1∙m−2

Fluids and inotropes

Correa-Gallego et al.
[31]
2015, Europe

Elective liver resection FloTrac/Vigileo;
SVV < 2 DS of pre-induction

Fluids

Elgendy et al. [32]
2017, Africa

Major abdominal FloTrac/Vigileo;
SVV < 12%,
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Forget et al. [33]
2011, Europe

Major abdominal Masimo set pulse oxymeter;
PVI < 13%

Fluids

Gomez-Izquierdo et al.
[34]
2017, Canada

Colorectal surgery Cardio Q
rise of SV > 10%

Fluids

Jammer et al. [35]
2010, Europe

Colo-rectal surgery CVC
ScVO2 > 75%

Fluids

Jhanii et al. [36]
2010, Europe

Elective gastro-intestinal Not stated
rise of SV > 10%

Fluids and inotropes

Joosten et al. [37]
2019, Europe

Major abdomina Clearsight closed loop;
SVV > 13%,
CI 2.5 3 L min−1 m−2

Fluids

Kaufmann et al. [38]
2018, Europe

Orthopaedic Esophageal Doppler
rise of SV > 10%
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Kumar et al. [39]
2016, India

Elective abdominal FloTrac/Vigileo;
SVV < 10%,

Fluids and inotropes
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Table 1 Characteristics of included studies (Continued)

Author, year, country Surgery Goal-directed therapy
(tools and goals)

Modality of
optimization

Lobo et al. [40]
2000, Brazil

Elective major abdominal or vascular PAC;
DO2 > 600 mL min−1 m−2

Fluids and inotropes

Lopes et al. [41]
2007, Brazil

Elective abdominal Radial artery line;
ΔPP ≤ 10%

Fluids

Luo et al. [42]
2017, China

Neurosurgery FloTrac/Vigileo;
SVV < 15%,
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Mayer et al. [43]
2010, Europe

Major abdominal FloTrac/Vigileo;
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Mikor et al. [44]
2015, Europe

Major abdominal Cevox
ScVO2 > 75% or reduction 3%

Fluids and inotropes

Moppett et al. [45]
2014, Europe

Emergent orthopaedic LiDCO;
SV increase < 10%

Fluids

Mukai et al. [46]
2020, Japan

Tranthoracic eophageal resection FloTrac/Vigileo;
SVV < 12%,

Fluids and inotropes

Noblett et al. [47]
2005, Europe

Major abdominal Esophageal Doppler;
SV optimization

Fluids

Pearse et al. [48]
2005, Europe

Elective or emergent major general LiDCO;
DO2 > 600 mL min−1 m−2, SV > 10%

Fluids and inotropes

Pearse et al. [49]
2014, Europe

Major general LiDCO;
SV increase < 10%

Fluids and inotropes

Pestana et al. [50]
2014, multicentric

Major abdominal NICOM;
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Pillai et al. [51]
2011 USA

Radical cystectomy Cardio Q
increase of SV > 10%

Fluids

Salzwedel et al. [52]
2013, Europe

Major abdominal ProAQT
PPV > 10%
CI ≥ 2.5 L/min/m2

Fluids and inotropes

Schereen et al. [53]
2013, Europe

Major abdominal and urologic FloTrac/Vigileo;
SVV < 10%

Fluids

Schmid et al. [54]
2019, Europe

Orthopaedic PulsioFlex
SVI increase < 10%
CI ≥ 2.5 L/min/m2

Fluids and inotropes

Shoemaker et al. [55]
1998, USA

Emergent or elective major abdominal
(general or vascular)

PAC;
CI > 4.5 L min−1 m−2,
DO2 > 600 mL min−1 m2,
VO2 > 170 mL min−1 m−2

Fluids and inotropes

Sinclair et al. [56]
1997, Europe

Orthopaedic Esophageal Doppler
SV optimization with FTc between 0.35–
0.4 s

Fluids

Srinvasa et al. [57]
2012, Australia

Elective colectomy Esophageal Doppler
SV optimization with FTc between 0.35–
0.4 s

Fluids

Stens et al. [58]
2017, Europe

Major abdominal Nexfin device
PPV < 12%
CI > 2.5 L min−1 m−2

Fluids and inotropes

Szturz et al. [59]
2019, Europe

Major abdominal Esophageal Doppler
FTc < 330 ms
CI > 2.5 L min−1 m−2

Fluids and inotropes

Ueno et al. [60]
1998, China

Hepatic resection PAC;
CI > 4.5 L min−1 m−2,
DO2 > 600 mL min−1 m2,
VO2 > 170 mL min−1 m−2

Fluids and inotropes

Van Beest [61]
2014, Europe

Elective major In spectra system
StO2 > 80%

Fluids and inotropes
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Risk of bias in individual studies
A domain-based evaluation, as proposed by the
Cochrane Collaboration, was used to evaluate the meth-
odological quality of RCTs [13]. This is a two-part tool,
addressing seven specific domains that are strongly asso-
ciated with bias reduction [14, 15]. Each domain in the
tool includes one or more specific entries in a ‘risk of
bias’ table. Within each entry, the first part of the tool
describes what was reported to have happened in the
study, in sufficient detail to support a judgement about
the risk of bias. The second part of the tool assigns a
judgement relating to the risk of bias for that entry. This
is achieved by assigning a judgement of ‘low risk’, ‘high
risk’, or ‘unclear risk’ of bias. After each domain was
completed, a ‘risk of bias summary’ figure presenting all
of the judgements in a cross-tabulation of study by entry
is generated. The green plus indicates low risk of bias,
the red minus indicates high risk of bias, the white color
indicates unclear risk of bias. For each study, the num-
ber of green plus obtained for every domain was calcu-
lated: RCTs with 5 or 6 green plus were considered as
having an overall low risk of bias.

Summary measures and planned method of analysis
Meta-analytic techniques (analysis software RevMan,
version 5.3.5, Cochrane Collaboration, Oxford, England,

UK) were used to combine studies using odds ratios
(ORs) and 95% confidence intervals (CIs) for dichotom-
ous variables, and weighted mean difference (WMD)
and 95% CI for continuous variables. A statistical differ-
ence between groups was considered to occur if the
pooled 95% CI did not include 1 for the OR. An OR less
than 1 favored GDT when compared with control group.
Two-sided p values were calculated. A random-effects
model was chosen for all analyses. Statistical heterogen-
eity and inconsistency were assessed by using the Q and
I2 tests, respectively [16, 17]. When the p value of the Q
test was < 0.10 and/or the I2 was > 40%, heterogeneity
and inconsistency were considered significant [18].

Results
Study selection
The search strategies identified 3561 (MEDLINE), 10306
(Cochrane Library), and 3110 (EMBASE) articles. Thir-
teen articles were identified through other sources (con-
gress abstracts, reference lists). After initial screening
and subsequent selection, a pool of 148 potentially rele-
vant RCTs was identified. The subsequent eligibility
process (Fig. 1) excluded 96 articles and, therefore, 52
articles (5, 18–68) with a total sample of 6315 patients,
were considered for the analysis.

Table 1 Characteristics of included studies (Continued)

Author, year, country Surgery Goal-directed therapy
(tools and goals)

Modality of
optimization

Venn et al. [62]
2002, Europe

Orthopaedic Esophageal Doppler
SV optimization with FTc > 0.4 s

Fluids

Wakeling et al. [63]
2005, Europe

Elective major bowel Esophageal Doppler;
SV optimization and rise in CVP < 3
mmHg

Fluids

Weineberg et al. [64]
2017, Australia

Pancreaticoduodenectomy FloTrac/Vigileo;
SVV < 20% baseline
CI ≥ 2 L min−1 m−2

Fluids and inotropes

Weineberg et al. [65]
2019, Australia

Liver resection FloTrac/Vigileo;
SVV< 20% baseline
CI ≥ 2.2 L min−1 m−2

Fluids and inotropes

Wilson et al. [66]
1999, Europe

Elective major (abdominal, vascular, urologic) PAC;
DO2 > 600 mL min−1 m−2

Fluids and inotropes

Wu et al. [67]
2017, China

Neurosurgery FloTrac/Vigileo;
SVV < 12%,
CI > 2.5 L min−1 m−2

Fluids and inotropes

Zhang et al. [68]
2013, China

Thorascopic lobectomy FloTrac/Vigileo;
SVV < 10%,
CI > 2.5 L min−1 m−2

Fluids and inotropes

Zheng et al. [69]
2013, China

Elective abdominal FloTrac/Vigileo;
SVI > 35 mL/m2,
CI ≥ 2.5 L min−1 m−2

Fluids and inotropes

Abbreviations: PPV pulse pressure variation, PVI Pleth Variability Index, SVV stroke volume variation, SV stroke volume, CI cardiac index, CVP central venous
pressure, SVI stroke volume index, SVR systemic vascular resistance, ScvO2 central venous oxygen saturation, DO2 oxygen delivery, Pcwp pulmonary capillary
wedge pressure, PAC pulmonary artery catheter, FTc flow-time-corrected, VO2 oxygen consumption, LiDCO lithium dilution cardiac output monitoring, NICOM non-
invasive cardiac output monitoring obtained via bioreactance, CVC central venois catheter, StO2 tissue oxygenation, DS standard deviation, ΔPP variation of
arterial pressure

Giglio et al. Journal of Anesthesia, Analgesia and Critical Care            (2021) 1:26 Page 6 of 16



Table 2 The risk of bias assessment for each trial, according to the Cochrane domain-based evaluation

Author, year,
country

Blinding of participants and
personnel
(performance
bias)

Random sequence
generation
(selection bias)

Allocation
concealment
(selection bias)

Outcome
assessment
(detection
bias)

Incomplete
outcome
(attrition
bias)

Selective
reporting
(reporting
bias)

Ackland et al 19

2015, Europe
+ + + + +

Arslan-Carlon et al.
[20]
2020, USA

+ + + + + +

Bahlmann et al. [21]
2019, Europe

+ + + + + +

Bartha et al. [22]
2018, Europe

+ + + + +

Bender et al. [23]
1997, USA

− − − −

Benes et al. [24]
2010, Europe

+ + + + +

Bisgaard et al. [25]
2013, Europe

+ + + + +

Brandstrup et al.
[26]
2012, Europe

+ + + + + +

Broch et al. [27]
2016, Europe

+ + +

Calvo Vecino et al.
[5]
2018, Spain

+ + + + + +

Cecconi et al. [28]
2011, Europe

+ + + +

Challand et al. [29]
2013, Europe

+ + + + +

Colantonio et al.
[30]
2015, Europe

+ + + + +

Correa-Gallego
et al. [31]
2015, Europe

+ + + + +

Elgendy et al. [32]
2017, Africa

+ − + +

Forget et al. [33]
2011, Europe

+ + + + +

Gomez-Izquierdo
et al. [34]
2017, Canada

+ + + + + +

Jammer et al. [35]
2010, Europe

+ + + + +

Jhanii et al. [36]
2010, Europe

+ + + + +

Joosten et al. [37]
2019, Europe

+ + + + +

Kaufmann et al.
[38]
2018, Europe

+ + + + +

Kumar et al. [39]
2016, India

− + + + +

Lobo et al. [40]
2000, Brazil

+ + +
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Table 2 The risk of bias assessment for each trial, according to the Cochrane domain-based evaluation (Continued)

Author, year,
country

Blinding of participants and
personnel
(performance
bias)

Random sequence
generation
(selection bias)

Allocation
concealment
(selection bias)

Outcome
assessment
(detection
bias)

Incomplete
outcome
(attrition
bias)

Selective
reporting
(reporting
bias)

Lopes et al. [41]
2007, Brazil

− − + + +

Luo et al. [42]
2017, China

− − + −

Mayer et al. [43]
2010, Europe

+ + + +

Mikor et al. [44]
2015, Europe

+ + + + +

Moppett et al. [45]
2014, Europe

+ + + + + +

Mukai et al. [46]
2020, Japan

+ + + +

Noblett et al. [47]
2005, Europe

+ − + + + +

Pearse et al. [48]
2005, Europe

+ + + + +

Pearse et al. [49]
2014, Europe

+ + + + + +

Pestana et al. [50]
2014, multicentric

+ + + + +

Pillai et al. [51]
2011 USA

− − − −

Salzwedel et al. [52]
2013, Europe

+ + + + + +

Schereen et al. [53]
2013, Europe

+ + + +

Schmid et al. [54]
2019, Europe

+ + + + +

Shoemaker et al.
[55]
1998, USA

− − − − − +

Sinclair et al. [56]
1997, Europe

+ + + + +

Srinvasa et al. [57]
2012, Australia

+ + + + +

Stens et al. [58]
2017, Europe

+ + +

Szturz et al. [59]
2019, Europe

+ + + + +

Ueno et al. [60]
1998, China

− + −

Van Beest [61]
2014, Europe

− − − + + +

Venn et al. [62]
2002, Europe

+ + + + +

Wakeling et al. [63]
2005, Europe

+ + + + +

Weineberg et al.
[64]
2017, Australia

+ + + + + +

Weineberg et al.
[65]

+ + + + + +
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Study characteristics
All inclueded articles evaluated the effects of
hemodynamic optimization on morbidity as primary or
secondary outcome and had a population sample of
adult surgical patients, undergoing both elective and
emergent procedures (Table 1). The studies were per-
formed in Australia, the USA, Europe, Canada, Brazil,
China, India, and Japan from 1991 to 2021 (Table 1) and
were all published in English.
Data concerning population and type of surgery are

presented in Table 1. The risk of bias assessment for
each trial is showed in Table 2.

Quantitative data synthesis
In 52 RCTs, 6325 patients were enrolled. Of these,
3162 were randomized to perioperative GDT and
3153 were randomized to control. In the overall
population, 2836 patients developed at least one com-
plication: 1278 (40%) were randomized to periopera-
tive GDT, and 1558 (49%) were randomized to
control. Pooled OR was 0.60 and 95% CI was 0.49–
0.72 (Fig. 2). The sensitivity analysis showed that the
significant effect of GDT on postoperative complica-
tions was confirmed by low risk of bias RCTs, with
high statistical heterogeneity and inconsistency (OR
0.64, 95% CI 0.52–0.79, p < 0.00001, Q statistic p =
0.0001; I2 = 56 %, 34 RCTs, 4841 patients) (Fig. 2).
The subgroup analysis enrolling major abdominal

patients showed a significant result (OR 0.72, 95% CI
0.59–0.87, p = 0.0007, Q statistic p = 0.01, I2 = 40%,
31 RCTs, 4203 patients) (Fig. 3). A significant effect
was observed in those RCTs enrolling exclusively
orthopedic procedures (OR 0.53, 95% CI 0.35–0.80, p
= 0.002, Q statistic p = 0.30; I2 = 17%, 7 RCTs, 650
patients) (Fig. 4). Also, neurosurgical procedures
seemed to benefit from GDT (OR 0.40, 95% CI 0.21–
0.78, p = 0.008, Q statistic p = 0.56; I2 = 0%, 2 RCTs,

208 patients, Fig. 5). Only 2 RCTs considered exclu-
sively vascular surgery, and the pooled OR showed a
non-significant effect of GDT on postoperative com-
plications (OR 1.18, 95% CI 0.56–2.46, p = 0.67, Q
statistic p = 0.79; I2 = 0%, 2 RCTs, 168 patients) as
well as for thoracic surgery (OR 1.04, 95% CI 0.28–
3.88, p = 0.95, Q statistic p = 0.01; I2 = 77%, 3 RCTs,
371 patients) (Supplementary material). For other sur-
geries, no other subgroup analyses were performed
due to the very low number of RCTs included.
A strategy adopting only fluids yielded significant re-

sults (OR 0.67, 95% CI 0.47–0.97, p = 0.04, 17 RCTs,
1937 patients), as well as one using fluids and inotropes
(OR 0.563, 95% CI 0.45–0.70, p < 0.00001, 35 RCTs,
4378 patients); both analyses had high statistical hetero-
geneity (Table 3). In both analyses, abdominal proce-
dures were the most frequent ones. Considering only
major abdominal surgery, using fluids alone yielded not
significant results (OR 0.87, 95% CI 0.64–1.19 p = 0.39,
Q statistic p =0.07; I2 = 40%, 13 RCTs, 1627 patients),
while adopting a combined strategy with fluids and ino-
tropes showed significant results (OR 0.63, 95% CI 0.49–
0.79 p = 0.0001, Q statistic p = 0.09; I2 = 32%, 18 RCTs,
2476 patients). Also, in orthopedic surgery, a GDT strat-
egy adopting only fluids yielded not significant result
(OR 0.43, 95% CI 0.15–1.22 p = 0.11, Q statistic p =
0.009; I2 = 59%, 3 RCTs, 242 patients), while a strategy
adopting fluids and inotropes showed significant results
(OR 0.59, 95% CI 0.37–0.94 p = 0.03, Q statistic p =
0.56; I2 = 0%, 4 RCTs, 406 patients). No further analyses
were possible in other kind of surgeries.
In those RCTs adopting only fluids as optimization

strategy, patients in the GDT group received more col-
loids (Table 4) and less crystalloids (Table 4) than pa-
tients in the control group. The total volume of fluid
was not significantly different between the GDT and the
control group.

Table 2 The risk of bias assessment for each trial, according to the Cochrane domain-based evaluation (Continued)

Author, year,
country

Blinding of participants and
personnel
(performance
bias)

Random sequence
generation
(selection bias)

Allocation
concealment
(selection bias)

Outcome
assessment
(detection
bias)

Incomplete
outcome
(attrition
bias)

Selective
reporting
(reporting
bias)

2019, Australia

Wilson et al. [66]
1999, Europe

+ + + + +

Wu et al. [67]
2017, China

− − −

Zhang el al [68].
2013, China

+ + + +

Zheng et al. [69]
2013, China

+ + + + + +

This is a two-part tool, addressing seven specific domains (namely sequence generation, allocation concealment, blinding of participants and personnel, blinding
of outcome assessment, incomplete outcome data, selective outcome reporting, and ‘other issues’) that are strongly associated with bias reduction. The green
plus indicates low risk of bias, the red minus indicates high risk of bias, the white color indicates unclear risk of bias
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Fig. 2 (See legend on next page.)
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Discussion
The epresent meta-analysis suggests that GDT can sig-
nificantly reduce postoperative complications. This effect
is confirmed when only low risk of bias RCTs were in-
cluded in the analysis. The surgical procedures that seem
to benefit most are abdominal, orthopedic, and neuro-
surgical ones.
GDTe was initially proposed for the maintenance of

an optimal cardiac output, in order to allow prompt res-
toration of perfusion and avoid cellular hypoxia and tis-
sue injury [55]. Nowadays, GDT does not aim to a
maximized cardiac output but rather pursues personal-
ized hemodynamic management assessing blood flow

and fluid responsiveness, in order to prevent not only
tissue hypoperfusion and hypovolemia, but also peri-
operative fluid overload, since both are associated with
adverse postoperative outcomes [70, 71].
Several RCTs and meta-analyses show that GDT re-

duces postoperative complications in high-risk surgical
patients, regardless the monitoring or the target [49, 72].
Therefore, the use of GDT has been suggested from ex-
pert groups [73, 74], at least in high-risk patients and in
major abdominal surgery, when high intravascular vol-
ume replacement is needed. However, the great hetero-
geneity of the studies exploring GDT effects, in terms of
types of surgery, timing, type of monitoring device, the

(See figure on previous page.)
Fig. 2 Rates of postoperative complications in subgroups defined according to risk of bias (see text for details) with odds ratios (ORs) and 95%
confidence intervals (CI). The pooled OR and 95% CI are shown as the total. The size of the box at the point estimate of the OR gives a visual
representation of the “weighting” of the study. The diamonds represent the point estimate of the pooled ORs and the length of the diamonds is
proportional to the CI

Fig. 3 Rates of postoperative complications in patients undergoing abdominal surgery, with odds ratios (ORs) and 95% confidence intervals (CI).
The pooled OR and 95% CI are shown as the total. The size of the box at the point estimate of the OR gives a visual representation of the
“weighting” of the study. The diamonds represent the point estimate of the pooled ORs and the length of the diamonds is proportional to the CI
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hemodynamic variables assessed and targeted and the
types and amounts of fluids, vasopressors, and/or ino-
tropes used can not be ignored [75], and make a definite
conclusion on GDT application much less clear. Focus-
ing on specific type of procedures or strategies could
add more clarity to the available evidences.
The incidence of postoperative complications is well

documented in abdominal surgery (from 12% after hepa-
tectomy to 44% after esophagectomy) [69], and similar
data are reported in other type of surgical procedures:
for example, in fracture surgery the incidence of postop-
erative complications ranges from 7 to 42% [76]. Also,
vascular surgery shows similar trends, with a range vary-
ing from 21 to 33% [69]. The incidence of systemic com-
plications in neurosurgical procedures is estimated
approximately at around 14% [77].
Our results confirm the significant reduction of post-

operative complications in major abdominal surgery.
Differently from others [77, 78], however, the present
meta-analysis yielded significant results also in other
kind of surgeries, suggesting that GDT application could
be extended to other surgical settings, since also ortho-
pedic and neurosurgical procedures can benefit from a
GDT approach, while no effects were seen in thoracic or
vascular surgery. Moreover, considering all types of sur-
geries, a GDT approach that uses only fluids or fluids

and inotropes has shown significant results, while in
major abdominal and orthopaedic surgery, only a strat-
egy adopting inotropes in addiction to fluids yielded sig-
nificant results. It is possible to argue that GDT, guiding
to an individualized and timely fluid administration, al-
lows to use fluids judiciously when they are needed, but
also to avoid unnecessary fluid loading when
hemodynamic targets are already met [6, 76]. This strat-
egy can allow to avoid fluid overload from one side and
maintain tissue perfusion on the other, thus reducing
postoperative complications. When fluids are not suffi-
cient, a combination of vasoconstrictors to maintain an
adequate mean arterial pressure and of inotropes to in-
crease stroke volume, guided by advanced hemodynamic
monitoring could help to assure adequate perfusion [73,
74]. The present results suggest that in those surgical
settings expected to be managed with large amounts of
fluids or enrolling old, high-risk patients, such as ab-
dominal or orthopedic ones, a GDT approach including
fluids and inotropes is effective in reducing postopera-
tive complications. We cannot state if the effects of
fluids and inotropes are synergistic or the beneficial ef-
fect of one intervention counteracts the adverse effect of
the other, but it can be supposed that a more extensive
hemodynamic monitoring and targeting can help to
guide perioperative management and to reduce

Fig. 4 Rates of postoperative complications in patients undergoing orthopedic surgery, with odds ratios (ORs) and 95% confidence intervals (CI).
The pooled OR and 95% CI are shown as the total. The size of the box at the point estimate of the OR gives a visual representation of the
“weighting” of the study. The diamonds represent the point estimate of the pooled ORs and the length of the diamonds is proportional to the CI

Fig. 5 Rates of postoperative complications in patients undergoing neurosurgery, with Odds Ratios (ORs) and 95% confidence intervals (CI). The
pooled OR and 95% CI are shown as the total. The size of the box at the point estimate of the OR gives a visual representation of the
“weighting” of the study. The diamonds represent the point estimate of the pooled ORs and the length of the diamonds is proportional to the CI
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postoperative complications in these specific surgical
scenarios. In this way, for example, patients with a re-
duced physiologic reserve may benefit of additional and
early administration of inotropic drugs to increase oxy-
gen delivery and counteract hypoperfusion. The low
number of patients involved, the mixed nature of sur-
gical procedures and the lack of individual data are
all possible explanations to the inconclusive findings
in the other surgical procedures (thoracic or vascular
surgery).
Another finding of our meta-analysis is that the total

volume of fluids did not increase with the use of GDT.
Patients received more colloids, but less crystalloids, so
that the total volume of fluids was not significantly dif-
ferent between the control and the GDT group. This
finding goes against the perception or the fear that using
hemodynamic optimization protocols may be associated
with excessive fluid administration, but, on the contrary,
supports the idea that GDT helps clinicians to give the

right amount of fluid to the right patients at the right
time.
A major limitation of our analysis is the presence of

heterogeneity in defining postoperative complications,
and keeping this in mind a random effects model was
used even when the estimated amount of heterogeneity
was low. A high heterogeneity was found in almost all
subgroups, reducing the strength of the results. More-
over, even if we tried to control clinical heterogeneity
with subgroup analyses splitting studies on the basis of
surgery type and targets, statistical heterogeneity
remained high, and therefore, the results should be
interpreted with caution. Third, the consistency of data
reporting postoperative fluid administration is lacking,
as well as data on oral fluid intake and perioperative
management is missing in many studies, so direct com-
parison is difficult. Finally, the definition of postopera-
tive complications is another crucial point of all these
studies. We choose to consider the rate of patients who

Table 3 The results of the subgroup analyses. RCTs were divided considering the kind of surgery (i.e., major abdominal, orthopedic,
vascular, and so on) and on the basis of the strategy adopted (i.e., only fluids or fluids and inotropes)

Patients with
complications
All studies

n. of RCTs
(references)

Treatment
n/N

Control
n/N

OR (95%CI) p
value

I2 q
statistic
p value

Fluids 17
(20, 26, 29, 31, 33–35, 37, 41, 45, 47, 51, 53, 56, 57, 62, 63)

472/976 520/961 0.67
(0.47–0.97)

0.04 63% 0.0003

Fluids and inotropes 35
(5, 21–25, 22, 28, 30, 32, 36, 38–40, 42–44, 46, 48–50, 52, 54,
55, 58–61, 64–69)

806/2186 1038/
2192

0.56
(0.45–0.70)

<
0.00001

50% 0.0004

Major abdominal
surgery

Fluids 13 (20, 26, 29, 31, 33–35, 37, 41, 47, 53, 57, 63) 414/812 432/815 0.87 (0.64–
1.119)

0.39 40% 0.07

Fluids and inotropes 18
(5, 27, 32, 36, 39, 43, 48–50, 52, 58–61, 64, 65, 68, 69)

43371281 554/
1285

0.63 (0.49–
0.79)

<
0.0001

32% 0.09

Orthopedic surgery

Fluids 3 (45, 56, 62) 49/132 60/112 0.43 (0.15–
1.122)

0.11 59% 0.09

Fluids and inotropes 4 (22, 28, 38, 54) 11/201 134/205 0.59 (0.37–
0.94)

0.03 0% 0.56

OR odds ratio, CI confidence interval, RCT randomized controlled trial

Table 4 Total amount of fluids, colloids, and crystalloids used in all RCTS included

Patients with
complications
All studies

n. of study
(references)

Treatment Control Standard mean difference
(95%CI)

p
value

I2 q statistic
p value

Total fluids (ml) 9
(22, 31, 33, 34, 37, 41, 43, 46, 53)

473 484 − 1.14
(− 2.38,0.11)

0.07 98% p <
0.00001

Colloids (ml) 12
(20–22, 26, 29, 33, 34, 45–47, 53,
56)

796 820 0.71
(0.07, 1.36)

0.003 97% p <
0.00001

Crystalloids (ml) 12
(20–22, 26, 29, 33, 34, 37, 45–47,
56)

765 786 − 2.07(− 1.03, − 3.11) 0.0001 99% p <
0.00001

OR odds ratio, CI confidence interval, RCT randomized controlled trial
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had at least one complication, like other authors pro-
posed [6] since the evaluation of specific organ-related
events has numerous bias linked to the definition of
postoperative event, the overlapping of postoperative
complications and the risk to over-estimate the total
number of complications.

Conclusion
The present meta-analysis, within the limits of the exist-
ing data, the clinical and statistical heterogeneity, gives
new suggestions on the beneficial effect of GDT in redu-
cing postoperative morbidity rate in other type of sur-
geries, different from the major abdominal. These results
call for other RCTs with the aim to explore the real im-
pact of hemodynamic goal-directed strategy and its spe-
cific issues (i.e., monitoring tools and targets, means
adopted, patients to enroll) in different surgical settings.
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