
Fragasso et al. J Anesth Analg Crit Care            (2023) 3:37  
https://doi.org/10.1186/s44158-023-00125-3

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Anesthesia,
Analgesia and Critical Care

Predicting acute kidney injury 
with an artificial intelligence-driven model 
in a pediatric cardiac intensive care unit
Tiziana Fragasso1*  , Valeria Raggi1, Davide Passaro2, Luca Tardella2, Giovanna Jona Lasinio2 and 
Zaccaria Ricci3,4 

Abstract 

Background Acute kidney injury (AKI) is among the most common complications following cardiac surgery in adult 
and pediatric patients, significantly affecting morbidity and mortality. Artificial Intelligence (AI) with Machine Learning 
(ML) can be used to predict outcomes. AKI diagnosis anticipation may be an ideal target of these methods. The scope 
of the study is building a Machine Learning (ML) train model with Random Forest (RF) algorithm, based on electronic 
health record (EHR) data, able to forecast AKI continuously after 48 h in post-cardiac surgery children, and to test its 
performance.

Four hundred nineteen consecutive patients out of 1115 hospital admissions were enrolled in a single-center retro-
spective study. Patients were younger than 18 years and admitted from August 2018 to February 2020 in a pediatric 
cardiac intensive care unit (PCICU) undergoing cardiac surgery, invasive procedure (hemodynamic studies), and medi-
cal conditions with complete EHR records and discharged after 48 h or more.

Results Thirty-six variables were selected to build the algorithm according to commonly described cardiac surgery-
associated AKI clinical predictors. We evaluated different models for different outcomes: binary AKI (no AKI vs. AKI), 
severe AKI (no-mild vs severe AKI), and multiclass classification (maximum AKI and the most frequent level of AKI, 
mode AKI). The algorithm performance was assessed with the area under the curve receiver operating characteristics 
(AUC ROC) for binary classification, with accuracy and K for multiclass classification. AUC ROC for binary AKI was 0.93 
(95% CI 0.92–0.94), and for severe AKI was 0.99 (95% CI 0.98–1). Mode AKI accuracy was 0.95, and K was 0.80 (95% CI 
0.94–0.96); maximum AKI accuracy was 0.92, and K was 0.71 (95% CI 0.91–0.93). The importance matrix plot dem-
onstrated creatinine, basal creatinine, platelets count, adrenaline support, and lactate dehydrogenase for binary AKI 
with the addition of cardiopulmonary bypass duration for severe AKI as the most relevant variables of the model.

Conclusions We validated a ML model to detect AKI occurring after 48 h in a retrospective observational study 
that could help clinicians in individuating patients at risk of AKI, in which a preventive strategy can be determinant 
to improve the occurrence of renal dysfunction.
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Background
Acute kidney injury (AKI) is one of the most common 
complications following cardiac surgery in adult and 
pediatric patients and affects short- and long-term mor-
bidity and mortality [1, 2].

The incidence of AKI in post–cardiac surgery children 
ranges from 15 to 80%, depending on the center, AKI 
definition used, and the population studied [3]. The inci-
dence of AKI in our center is about 70%, of which 26% of 
cases are classified as mild and 43% as severe AKI [4].

All cardiac surgical patients are exposed to inflamma-
tory (e.g., cardiopulmonary bypass, CPB) and ischemic 
triggers (e.g., aortic cross-clamp) along with nephrotox-
ins (e.g., antibiotics and contrast media), which hamper 
proper renal perfusion [5]. Furthermore, children have 
peculiar conditions predisposing them to AKI, e.g., pul-
monary hypertension and cyanotic heart disease, which 
occur in non-surgical patients and throughout all pedi-
atric cardiac intensive care unit (PCICU) admissions 
[2]. All these factors can be present in the postoperative 
phase, but AKI can also occur in non-surgical patients 
and throughout all PCICU admissions. Late presentation 
of severe AKI may have a significantly higher mortality 
and be strictly related to baseline cardiac disease [4].

Prevention has been identified in the adult setting 
as an effective approach to reduce AKI incidence. The 
introduction of the Kidney Disease Improving Global 
Outcome (KDIGO) AKI bundle, applied to prevent 
post-cardiac surgery AKI, included utilization of bio-
markers, optimization of volume status and hemody-
namics, avoidance of nephrotoxic drugs, and prevention 
of hyperglycemia [6] and has shown promising results 
in adult patients. Similarly, interventional trials exist for 
the treatment of established post-cardiosurgical AKI; a 
meta-analysis based on available observational data did 
not identify any effective candidate interventions [7]. 
Therefore, in the pediatric population, every effort must 
be posed to prevent AKI.

In the last 10  years, artificial intelligence (AI) has 
become a hot topic in medical research. The concept 
of AI refers to the development of computer systems 
capable of performing tasks normally requiring com-
plex calculations and multiple regressions. The ability of 
AI appears particularly suitable when the prediction of 
a very well-defined outcome is concerned [8]. Machine 
Learning (ML) is a field of applied AI that allows software 
applications to run very specific types of data. The pre-
dictions that ML algorithms make are based on the rec-
ognition of recurrent patterns of data.

The aim of this research is to develop an algorithm 
(Random Forest, RF) able to predict AKI episodes defined 
according to the KDIGO stage, after 48 h, throughout all 
PCICU admissions.

Although the efficacy of prediction models has been 
already investigated in several studies, we conducted the 
present study to evaluate the performance of a machine 
learning model in a population with well-known and 
homogeneous risk factors and to see any fluctuation per-
formances in predicting different severity of AKI.

Methods
Study design and settings
The study was conducted following the Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) statement [9].

The data used in this study were retrospectively 
extracted from the electronic health record (EHR) sys-
tem running in the PCICU at Bambino Gesù Children’s 
Hospital between January 1, 2018, and February 29, 2020. 
All data were extracted and processed in a de-identified 
format.

Bambino Gesù Ethics Committee approved the study 
design and waived the need for informed consent due to 
the retrospective nature of the study (protocol number 
2002_OPBG_2019).

Inclusion and exclusion criteria
Patients from birth to 17  years old who required elec-
tive and urgent admission to the PCICU for surgical, 
invasive procedures (hemodynamic studies), and medi-
cal conditions were enrolled. Therefore, all patients older 
than 18 years at admission were excluded. All admissions 
lasting less than 48  h were excluded. Patients without 
invasive arterial pressure monitoring were also excluded 
since non-invasive arterial pressure monitoring may 
show significant differences with invasive measurements 
[10]. Also, patients with a clinical history of chronic renal 
dysfunction were excluded.

AKI definition
AKI was defined according to the KDIGO classification 
[11]. KDIGO uses gradual increases of serum creatinine 
(SCr) and progressive decrements in urine output (UOP) 
to define AKI and its severity, staging AKI from 0 (no 
AKI) to 3. Stages 2 and 3 are considered as severe AKI, 
whereas 1 is defined as mild.

In our PCICU, an automatic KDIGO calculation has 
been implemented in the EHR to generate a KDIGO 
stage at the time of admission, eventually updating every 
hour. Detected AKI episodes were extracted for the pur-
pose of this study. Basal creatinine, to which the increase 
in SCr is referred, was considered in all patients as the 
pre-PCICU admission value, that was available in all 
patients.
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Data collection
The selection of variables to build the predictive model 
was guided by the availability of parameters validated and 
stored in the EHR and through previously described pre-
dictors of AKI in cardiosurgical patients (Table 1) [12].

Datasets used to train and validate the algorithm were 
obtained from Digistat® EHR (Ascom UMS srl Uniper-
sonale, Scandicci, Florence, Italy) utilized in our center; 
it applies Structured Query Language (SQL). Medical 
admissions’ data were extracted between PCICU admis-
sion and discharge; surgical and cath lab admissions were 
extracted between the end of the first surgery (or first 
cardiac procedure) and PCICU discharge or the start of 
the following procedure (in case of repeated interven-
tions). In cases where cath lab admissions were followed 
by surgery, data were included between PCICU admis-
sion after the cath lab procedure and discharge after sur-
gery. Data on Digistat were both manually inputted and 
automatically transmitted from electronic devices and 
monitors. All data were validated by nurses and doctors 
or provided by the laboratory.

Demographic data at admission, baseline vital signs, 
and laboratory values were obtained. After PCICU 
admission, vital parameters were gathered for analysis 
every 2  h (as per nurses’ validation according to insti-
tutional policy), and laboratory exams were requested 
every 24  h. The first blood gas analysis (BGA) per each 
PCICU day and preselected therapies likely associated 
with AKI risk were recorded for the analysis. Table  1 
details demographic, clinical, laboratory, BGA, and ther-
apeutic variables that were collected for this study. Also, 
PCICU length of stay and patients’ mortality are reported 
in Table 2.

In case of missing BGA and vital signs data, a nonpara-
metric missing value imputation algorithm was used: 

MissForest (MissForest R Package)—starting from the 
assumption of Missing at Random Case [13]. In case of 
laboratory missing data at the preset timepoint, the clos-
est measure in time was selected. As far as fluids and 
therapies are concerned, in case of missing data, the 
input value was considered as zero. The only exceptions 
were patients with no arterial pressure data due to arti-
facts or errors in EHR system recording.

Outcomes
Primary objective
To train and test an RF algorithm predicting the occur-
rence of severe AKI after 48 hours. This period has been 
established considering the possibility to reliably hypoth-
esize a potential preventive intervention and considering 
that this is the time window within which KDIGO stag-
ing implies a creatinine modification. Furthermore, con-
sidering that KDIGO classification in our EHR refreshes 
hourly, but the most important changes occur every 6 
hours (due to the urine output classification calculation), 
the predictive approach can be summarized using this 
schema:

6 h data [PREDICTION] > 48 h temporal delay > 6 h 
data [OUTCOME].

In other words, the information of all patients has been 
discretized in “6 h data” packages, and AKI has been pre-
dicted, continuously, in the time window of the first “6 h 
data” package, compared to the “6 h data” package occur-
ring soon after the 48-h temporal delay and containing 
AKI classification information.

Secondary objectives
To train and test an RF algorithm predicting any AKI, 
mode AKI (the most common AKI stage of the six hourly 

Table 1 Variables collected for algorithm building

Admission and post-admission data and Fluids are manually inserted into the electronic health record (EHR) by clinicians and nurses. Vital signs, Blood gas analysis, and 
Laboratory analysis are automatically collected from monitors and labs into the EHR. Therapies are prescribed by clinicians and validated by nurses. Once they are 
validated, data are automatically extracted from the EHR

PIM3 Paediatric Index of Mortality3 score, VIS Vasoactive Inotropic Score, Admission type post-surgical/post cath lab/medical admission, CPB cardiopulmonary bypass, 
SCr serum creatinine, SAP systolic arterial pressure, DAP diastolic arterial pressure, MAP mean arterial pressure, HR heart rate, BE base excess, LDH lactic dehydrogenase, 
aPTTs activated partial thromboplastin time in seconds

Type of variable Name of variable

Admission and post-admission data (fixed data) Sex, age, weight, PIM3, VIS, admission type, basal SCr, CPB 
duration, cross-clamp duration

Vital signs SAP, DAP, MAP,  O2 saturation, HR

Fluids Diuresis, fluid input, fluid output, blood input, blood output

Blood gas analysis BE, Na + , Cl-, Lactate, blood pH

Laboratory analysis SCr, albumin, hemoglobin, platelets, LDH, aPTTs

Therapies Adrenaline, milrinone, furosemide, levosimendan, vasopres-
sin, ethacrynic acid
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assessments), and maximum AKI stage (the most severe 
AKI stage of the six hourly assessments) after 48 h; to 
detect the importance of each variable in the algorithm of 
AKI prediction (see “importance matrix” below); and to 
provide descriptive analyses of the sampled cohort.

AI definitions
The RF algorithm proposed by Breiman [14] is an ensem-
ble learning method for classification tasks that oper-
ates by constructing a multitude of decision trees at 
training time to reach a single result. Random forest is 
an improvement over bagged trees since it introduces a 
small tweak that decorrelates the trees [15]. The popu-
larity of the RF method depends on its accuracy and on 
the fact that it can be applied to a wide range of predic-
tion problems using a relatively small number of tuning 
parameters, compared to other methods [16].

The RF method graphs the predictors according to 
their effect on model improvement when splits are 
made on a predictor over the entire forest. The variable 
with the highest improvement score is set as the most 
important variable, and the other variables follow in 

order of importance (importance matrix). The variable 
importance scores are scaled to be between 0 and 100.

Statistical analysis
Classification procedure and evaluation of the classification 
performance
The Classification And Regression Training (CARET) 
package of the R statistical software was used to create 
the predictive model through the classification proce-
dure [17].

The classification procedure was set as follows:

– The dataset was split into train (70%) and test (30%) 
sets. The first was used to fit the classification 
model, whereas the latter was employed to evaluate 
its performance.

– All the reported results were obtained on the test 
dataset.

– In splitting the data, the percentages of each class 
were preserved in train and test sets.

Table 2 Demographics and outcomes

PIM3 Paediatric Index of Mortality3 score; VIS Vasoactive Inotropic Score, basal SCr basal serum creatinine, CPB cardiopulmonary bypass, MV mechanical ventilation, 
LOS length of stay
a Numbers of surgical procedures for each patient during the stay
b Numbers of cardiac catheterization laboratory procedures for each patient during the stay
c Medical admission: patients with no procedures during the stay

Variables ALL (N = 419) No/mild AKI (N = 196) Severe AKI (N = 223) p

Median/[n.] (IQR) Median/[n.] (IQR) Median/[n.] (IQR)

Age Days 164 (31–999) 194 (39–699.25) 157 (22–1386.5) 0.92

Neonates [n.] [105] [45] 60] 0.91

Weight Kg 5.6 (3.3–12.5) 5.6 (3.4375–10.075) 5.5 (3.2–14) 0.81

Gender F [n.] [193] [91] 102] 0.93

M [n.] [226] [105 121]

PIM3 0.0153 (0.009–0.039) 0.013 (0.009–0.035) 0.020 (0.010–0.045) 0.003

VIS 10 (0–15) 7.5 (0–15) 10 (2.5–15) 0.015

basal SCr (mg/dl) 0.35 (0.26–0.58) 0.31 (0.26–0.5) 0.395 (0.26–0.6225) 0.017

CBP duration Min 140 (96–203) 120 (79–161) 170 (114–227.75)  < 0.0001

Cross clamp duration Min 74.5 (41–110) 66.5 (37–97) 79.5 (46–129.25) 0.003

MV days Days 3 (2–6) 2 (2–4) 4 (2–8.5)  < 0.0001

LOS Days 6 (4–13.5) 6 (4–14) 6 (4–13) 0.8

Mortality [n.] [11] [1] [10] 0.012

Surgerya [n.] 0 [73] [31] [42] 0.003

1 [306] [157] [149]

 > 1 [41] [9] [33]

Cath labb [n.] 0 [337] [173] [164] 0.53

1 [73] [20] [53]

 > 1 [10] [4] [7]

Medicalc [n.] [39] [21] [18] 0.61
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– In order to have more stable predictions and avoid 
the problem of overfitting, the k–Fold Cross–Valida-
tion (with k = 10), repeated 3 times, was used.

– Tuning of the multiple try (mtry) parameter using the 
random choice option was performed to select the 
RF parameters.

– Finally, for this first model, the RF classification 
method was used.

The classification performance, according to the lit-
erature [18], was evaluated on different classification 
models:

– Binary classification with two possible classes.
– Multiclass classification with more than two classes.

Therefore, the KDIGO scores calculated in the EHR 
and targeted in the second 6-h window were discretized 
as follows:

– Bin AKI: 0 if AKI stages are zero, 1 otherwise.
– Severe AKI: 0 if the stages are all 0 or 1, 1 otherwise.
– Max AKI: the maximum value assumed within the 6 

hourly measurements of the 6-h window.
– Mode AKI: the more frequent value within the 6 

hourly measurements of the 6-h window.

The first two evaluations include binary values, while 
the other values are 0, 1, 2, and 3, following the KDIGO 
AKI stage criteria. Bin AKI and severe AKI are com-
monly present in the literature [19]. Max AKI and Mode 
AKI were introduced in the analysis to offer additional 
and complementary information to the previous ones. 
In the binary case, performance with the area under 
the curve receiver operating characteristic (AUC ROC) 
curve with 95% confidence interval (CI) was measured. 
Sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) were also analyzed. 
The multiclass mode performance was obtained through 
accuracy [20], computed through the confusion matrix 
and kappa index [21].

Descriptive analyses
All continuous variables are expressed as median and 
interquartile range (IQR). Range was indicated in specific 
cases. When appropriate, mean and standard deviation 
were utilized. The Mann–Whitney test was used to assess 
the differences between no AKI/mild AKI and severe AKI 
populations. The chi-square test was utilized to compare 
the two groups. Kruskal–Wallis test and two-way analysis 
of variance were utilized to evaluate the modification of 
clinical variables over time.

A p value < 0.05 was considered statistically significant. 
Statistical analysis was performed with the GraphPad 
Prism 9.0 software package (GraphPad Software, San 
Diego, CA).

Results
Demographics of AKI incidence and outcomes
During the study period, 1115 patients were admitted to 
the PCICU. Of these, 345 were excluded because of miss-
ing invasive arterial pressure data, and 351 were excluded 
because their admission lasted < 48  h. Therefore, 419 
children were enrolled in the study. These patients 
were admitted to the PCICU after a cath lab procedure 
(n = 34), cardiac surgery (n = 299), cath lab and surgery 
(n = 48), and for medical reasons (n = 38) (Fig. 1). Demo-
graphic and clinical features are depicted in Table  2. 
Admission diagnoses and procedures are listed in supple-
mentary Table 1.

AKI incidence
Out of 419 patients, 71 (17%) had no AKI, 125 (30%) 
had stage 1, 75 (18%) had stage 2, and 148 (35%) had 
stage 3 AKI. Overall, 223 patients (53%) had a severe 
AKI episode. The diagnosis of AKI was made 1.4 (1–3) 

Fig. 1 Patients’ enrollment and dataset building. IABP, invasive arterial 
blood pressure
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days after PCICU admission. AKI stage 1 was detected 
at a median of 1.7 (1.4–4.2) days from PCICU admis-
sion, AKI 2 at 1.4 (1–2.7) days, and AKI 3 at 1 (0.7–1.7) 
days. Using Kruskal–Wallis test, this difference was 
found to be statistically significant (p < 0.0001), with 
AKI stage 1 occurring later than other stages. Continu-
ous renal replacement therapy was administered to 
eight patients (2%).

PCICU length of stay and mortality
The average PCICU length of stay was 6 (4–14) days 
with a maximum stay of 275 days. The average duration 
of mechanical ventilation was 3 (2–6) days with a maxi-
mum of 93 days. A total of 11 (2.6%) patients died during 
PCICU admission.

Characteristics of no/mild AKI and severe AKI patients
Severe AKI was only considered since it is the most con-
sistent clinical categorization for epidemiological pur-
poses in PCICU [19]. Several clinical variables showed 
significant differences between no/mild AKI patients 
and severe AKI patients (Table 2). Also, CPB and cross-
clamping duration, basal serum creatinine, vasoactive 
inotrope score (VIS), and Pediatric Index of Mortality 3 
(PIM3) showed significant differences between the exam-
ined populations (Table  2). The number of ventilation 
days and mortality were higher in severe AKI patients 
(Table 2). Fluid balances were frequently positive at post-
operative day 1 (POD1) and tended to be negative there-
after (Supplementary Fig.  1). Using two-way ANOVA, 
there was a significant difference between fluid balances 
between no/mild AKI and severe AKI patients over time 
(p = 0.0003), with fluid balances being less negative in the 
latter group (Supplementary Fig. 1).

Classification procedure and training performance
Along the 12,848 predictions, the RF model was devel-
oped on 70% of these, randomly selected. The test was 
applied to the remaining 30%. The train group and the 
test group did not show significant differences in over-
all demographic characteristics and model performance 
(data not shown).

Along 3854 predictions of the test population, bin AKI 
was classified with an AUROC of 0.93 (95% CI 0.92–
0.94), a sensitivity of 0.71, specificity of 0.98, PPV of 0.92, 
and an NPV of 0.92. Severe AKI was classified by the 
RF model with an AUC ROC of 0.99 (95% CI 0.98–1), a 
sensitivity of 0.74, specificity of 0.99, PPV of 0.94, and an 
NPV of 0.97. Max AKI achieved 0.91 (k = 0.71), whereas 
mode AKI classification was 0.95 (k = 0.79). Confusion 
matrix of multiclass Max and Mode AKI are reported in 
Supplementary Fig. 2.

All variables used to train the algorithm are listed in 
Table 1.

Their importance in the algorithm efficiency was calcu-
lated through an importance matrix plot that provides a 
list of the most significant variables in descending order 
showing for each variable, how important it is in classify-
ing the data.

Importance matrix plot
The first five most important variables were:

– For binary AKI: creatinine, basal creatinine, platelets 
count, adrenaline support, and lactate dehydrogenase 
(LDH).

– For severe AKI: creatinine, CPB duration, basal cre-
atinine, platelets, and LDH.

– For maximum AKI: creatinine, basal creatinine, 
platelets, LDH, and diuresis.

– For mode AKI: creatinine, basal creatinine, platelets, 
adrenaline, and LDH.

The remaining variables are shown in Fig. 2A–D.

Discussion
The aim of the study was to implement a Machine Learn-
ing-driven AKI prediction algorithm in a PCICU setting 
and evaluate its performance on different severity of AKI.

AKI prevention is, so far, the action that can better 
improve morbidity and mortality caused by renal dys-
function, either in adults or pediatric critical patients. 
Therefore, relying on ML algorithm to detect patients 
who can benefit from a kidney protective strategy can be 
successful in decreasing AKI rates. Considering the high 
performance of these methods in predicting a potentially 
avoidable complication, this is potentially a powerful tool 
to improve clinician workflow, ultimately leading to more 
personalized and efficient health care.

This study confirms that AI can be a feasible and accu-
rate tool for the continuous prediction of AKI in pediatric 
cardiac patients; in binary and in multiclass classification, 
its performance is good. Furthermore, the RF algorithm 
is well recognized for its accuracy and its ability to deal 
with both small sample sizes and high-dimensional fea-
ture spaces.

As highlighted by Biau and Scornet [16], the popular-
ity of RF depends on the fact that they can be applied to 
a wide range of prediction issues using a relatively small 
number of tuning parameters, compared to other meth-
ods. The presence of a little number of parameters to 
tune makes using this algorithm easier than others.

The variable importance plot gives an indication of how 
useful the variables are for prediction.
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Interestingly, in importance matrix plots shown for 
every classification, distribution variables were rather 
consistent, with the surgical status (both post-surgical, 
post-cath lab, and medical) being the least important and 
creatinine, platelets, and LDH and diuresis being among 
the most influential. While the importance of creatinine 
and diuresis is not surprising, it is interesting that plate-
lets and LDH are constantly on top of the plot, while 
other variables are relevant in some classifications (CPB 
duration in severe AKI, adrenaline in binary AKI), but 
not in others. It can be speculated that LDH is derived 
from hepatocytes and liver congestion as a response to 
right ventricular dysfunction, which is frequently asso-
ciated with AKI [22]. Also, LDH is an important marker 
of systemic (cellular) perfusion and possible indica-
tor of hemolysis [23]. In one case, it implies AKI due 
to impaired anterograde perfusion; on the other hand, 
renal toxicity is a sequela of potential free hemoglobin 

[24]. However, it appears as a novel biomarker, and this 
could be one of the results of AI applications. Similarly, 
the other included parameters, whose importance may 
appear as scaled down (i.e., fluid input and fluid output) 
or that appeared significant at “traditional” univariate 
analysis, should be seen in the context of an ML method, 
where all the predictors must be integrated in the calcu-
lation. Finally, once again, the application of serial cre-
atinine measurements (including basal values, always 
available in cardiac patients), although long-known as a 
biased biomarker, is confirmed as fundamental in pre-
dicting AKI in this subset [25]. It might be interesting to 
appraise if the integration of a routinely available renal 
biomarker might further improve the model.

This model was particularly efficient in detecting severe 
AKI (meant as stages 2 and 3) that is the most common 
outcome of observational studies [4]. The multiclass 
prediction of max AKI and mode AKI is little explored 

Fig. 2 Importance matrix plots. A Binary acute kidney injury (AKI). B Severe AKI. C Max AKI. D Mode AKI
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in the literature but may offer complementary informa-
tion to the binary one to support physicians’ decisions. 
As a matter of fact, not only can the occurrence of AKI 
be predicted, but also its severity or its most frequent 
occurrence along the KDIGO stages, and this could be 
determinant since specific bundles for mild or severe AKI 
could be designed.

ML models, e-alert systems, and clinical decision sup-
port systems have been variably described in the pediat-
ric literature with controversial results [26]. In general, 
they have been shown to reduce the time to AKI diagno-
sis in several clinical settings, including in patients with 
cardiac disorders. However, these methods frequently 
resulted in false positives, leading to unnecessary inter-
ventions or unintended harm [27]. Evidence show-
ing improved outcomes with ML prediction models for 
pediatric AKI is currently scarce. Moreover, ML models 
may be difficult to understand by bedside clinicians. Fur-
thermore, significant data cleaning must be performed 
to develop these algorithms, and management of miss-
ing data can affect the calculations. Urine output is also 
frequently excluded from ML models due to difficult data 
retrieval [26].

In this light, our system would have significant posi-
tive characteristics. It applied the automatic AKI diag-
nosis calculation, available in our center, that accurately 
and timely identified all AKI stages, including urine out-
put measures. Furthermore, data cleaning was relatively 
unnecessary, and the amount of missing data was limited 
by choosing predictors that were all widely available in 
our EHR. Finally, false positives in our system could be 
reduced by avoiding the prediction of mild AKI or infre-
quent episodes (i.e., by choosing Mode AKI and not Max 
or severe AKI as an outcome to predict).

This AI model has the potential to be applied to the 
EHR as an advanced e-alert, which automatically and 
continuously provides the AKI risk in all patients, accord-
ing to each of the classification methods. The future 
direction will be to implement this system to verify if cli-
nicians would act differently by knowing that an AKI risk 
is relevant in their patients. A potential alternative might 
be to create a dedicated bundle of actions aiming at AKI 
prevention.

Limitations
Major limitations of the study are its retrospective 
nature, the small sample size, and the lack, among the 
variables, of some recognized risk factors involved in 
the kidney injury process after cardiac surgery (i.e., van-
comycin administration, aminoglycosides prescription, 
surgical risk score, cardiac anatomy, and emergency 
admission). We did not include such risk factors because 
they were frequently lacking in our EHR database. On the 

36 variables extracted, there was almost no need for data 
cleaning, and missing variables were reliably managed. 
Finally, this study requires an external and prospective 
validation to consistently confirm these preliminary data. 
A similar set of children in another PCICU or a novel set 
of patients admitted after the studied period should be 
included and enrolled in a novel study. This work mainly 
aimed to verify the feasibility of EHR consultation and 
data selection, download, and managing. Validation of 
the model is going to be soon applied, considering the 
encouraging results of the training and test.

Lastly, we did not consider if the model could distin-
guish transient AKI cases and persistent AKI cases (i.e., 
lasting less or more than 48  h). However, in a recent 
observation (4), our group detected a relatively low rate 
of persistent AKI in pediatric cardiac surgery patients 
(3.5%) and it is possible that in a future larger study this 
outcome may be detected.

Conclusions
An ML model to detect severe AKI occurring after 48 h 
in PCICU patients showed with high accuracy that cre-
atinine, basal creatinine, platelets count, adrenaline sup-
port, and LDH are the most important predictors. Any 
AKI, the most frequent level of AKI (mode AKI), and the 
maximum level can also be predicted. This algorithm can 
help clinicians in individuating patients at risk of AKI in 
which a preventive strategy can be attempted.
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