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Abstract 

Background  The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the 
delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of 
a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the 
telemedicine approach to cancer pain management.

Materials and methods  We implemented a structured dataset comprising demographic and clinical variables 
from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a 
conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their 
characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with 
a higher number of remote visits.

Results  The generated dataset exhibits a distribution comparable to the reference dataset for all considered vari-
ables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, 
and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a 
higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated 
that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an 
increased number of telemedicine-based clinical evaluations.

Conclusion  As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs 
can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. 
Nonetheless, it is crucial to carefully address the limitations of these approaches.
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Introduction
The utilization of telemedicine is progressively rising in 
various medical domains, transforming the way health-
care is delivered [1]. This technology-driven approach 
allows for remote patient care, enabling healthcare pro-
fessionals to provide medical services, including pain 
management, through virtual platforms [2, 3]. Within 
the realms of oncology and pain medicine, telemedicine 
has emerged as a promising tool for addressing the com-
plex needs of patients experiencing cancer-related pain 
[4]. It offers, indeed, a convenient and accessible means 
of delivering healthcare services, especially for patients 
who may face challenges in accessing specialized care 
due to geographic distance, physical limitations, or other 
impediments. Remarkably, patients can receive expert 
care without the need for frequent, time-consuming vis-
its to healthcare facilities, reducing the burden of travel 
and associated costs. Moreover, telemedicine allows for 
increased flexibility in scheduling appointments, making 
it easier for patients to receive timely care and support [5].

However, telemedicine for cancer-related pain manage-
ment also entails different challenges [6]. General issues 
such as security and privacy of patient data, and techni-
cal problems, are common to telemedicine applications 
in various medical fields. Nevertheless, it is crucial to 
establish the dynamics of the care process to adapt the 
functionality of the system to meet the clinical needs of 
patients suffering from cancer pain. Within the frame-
work of personalized care, it is necessary to establish cali-
brated and dynamic pathways that can anticipate the need 
for in-person visits, the requirement for further diagnos-
tic investigations, and the appropriate timing of clinical 
reassessments, for example, for opioid titration [7].

The integration of artificial intelligence (AI) in health-
care has enormous potential to transform the provision 
of medical services. AI algorithms have the capabil-
ity to uncover patterns, correlations, and trends within 
diverse datasets that may remain unnoticed by human 
observers. Consequently, by leveraging AI’s capabili-
ties in data analysis, pattern recognition, and deci-
sion-making, healthcare professionals can enhance the 
efficiency and effectiveness of telemedicine strategies. 
Therefore, healthcare providers are empowered to exe-
cute more informed decisions and can customize treat-
ment approaches to meet the specific needs of individual 
patients. Different AI and machine learning (ML) strat-
egies have been previously evaluated by our research 
group for this purpose [8]. In this article, we explore the 
capabilities of a specific AI system, generative adversarial 
network (GAN), and its potential applications in the con-
text of our research focus. GAN is an AI framework that 
consists of two antagonistic neural networks: the genera-
tor and the discriminator network. Notably, GANs play 

a notable role in machine learning (ML) by generating 
new data that closely resembles a given dataset. These 
techniques offer exciting prospects in medical research, 
revolutionizing various aspects of healthcare including 
medical imaging [9], data synthesis [10], disease diagno-
sis [11], and drug discovery [12].

In this article, we evaluate the potential applications 
of GANs for implementing a structured dataset and 
enhancing descriptive and predictive analyses.

Material and methods
Study population and model of care
The study population comprised adult patients receiving 
telemedicine-based treatment for cancer pain at the Isti-
tuto Nazionale Tumori, Fondazione Pascale, Italy.

To provide comprehensive care, a hybrid model was 
implemented. The initial phase involved an in-person 
visit where a thorough clinical and instrumental evalu-
ation was conducted. During this visit, legal and regula-
tory concerns, including obtaining informed consent, 
collecting essential data, and delivering patient train-
ing, were also addressed. Subsequently, synchronous 
real-time video consultations were scheduled based on 
the patient’s clinical needs. Additional remote follow-
up consultations were programmed or arranged as per 
the patients’ requirements. Face-to-face visits were also 
allowed for performing minimally invasive procedures, 
diagnostic purposes, addressing acute clinical concerns 
(e.g., managing drug side effects), or upon the patient’s 
request [5].

The study was approved by the local Medical Ethics 
Committee (protocol code 41/20 Oss; date of approval: 
26 November 2020), and all participating patients pro-
vided written informed consent. The investigation 
adhered to the principles outlined in the Declaration of 
Helsinki.

Dataset implementation
The dataset under analysis comprised 226 patients and a 
total of 489 remote visits following the local telemedicine 
program. These visits were conducted from March 2021 
to September 2022.

The structured dataset included demographic variables, 
such as age and gender along with clinical data including 
cancer type, Eastern Cooperative Oncology Group Per-
formance Status (ECOG-PS), opioid prescription as mor-
phine equivalent dose (MED), the presence of metastasis 
(including bone metastases as a separate variable), number 
of remote consultations, and pro-capita teleconsultations. 
Additionally, process variables such as the dropout rate 
from the remote process, multiprofessional consultations, 
and the distribution of visits across the national territory 
were considered. Pain features included background pain 
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(nociceptive, neuropathic) and breakthrough cancer pain 
(BTcP) [13].

Generative adversarial network application
From the original dataset, the following variables were con-
sidered: age, gender, cancer type, metastases, bone metas-
tases, BTcP status and type (neuropathic), MED, and the 
number of teleconsultations. A cleaning procedure was 
performed on data to encode categorical variables and to 
standardize numeric ones. Data were split in training and 
testing set in a 70–30% ratio. The deep learning model, 
namely conditional GAN, was employed to generate syn-
thetic samples that closely resemble the attributes and pat-
terns observed in the real data. This AI framework consists 
of a tandem pair of deep neural networks (DNNs): G as the 
generator and D as the discriminator. The generator, G, 
learns the training data distribution and generates observa-
tions accordingly, while the discriminator, D, assesses the 
likelihood of a sample originating from the training data or 
from G. Consequently, the objective of G is to optimize the 
probability of D making an error. D functions as a binary 
classifier, distinguishing between real data and the gener-
ated data from G [14].

In simple terms, the generator’s goal is to produce data 
that closely resembles real data, to the point of being indis-
tinguishable. Initially, the G output may be random, but 
through training, it learns to generate data that simulates 
the real examples in the training dataset. On the other 
hand, the D’ role is to differentiate between the fake exam-
ples generated by G and real examples from the actual data 
domain. Its purpose is to classify input examples as either 
belonging to G or the real data distribution. In the case of a 
conditional GAN (cGAN), both G and D are conditioned to 
have knowledge about the specific type or category of data 
they are handling. This conditioning enables them to gen-
erate or discriminate samples based on the provided infor-
mation, ensuring that the generated samples are coherent 
and aligned with the desired category or condition (Fig. 1).

The ability of D to distinguish between real and gener-
ated samples is calculated through a binary cross-entropy 
function [15]. The conditional probability is used for both 
the generator and the discriminator, instead of the regular 
one. Two neural networks (i.e., D and G) work in a mini-
max game:

In the formula, V(D, G) represents the value function, 
namely the objective function used to train the D net-
work and evaluate its performance in classifying real and 
generated samples; “pz” is the probability distribution 
of the latent space or the input noise vector; and “pdata” 

minGmaxDV (D,G) = Ex∼pdata(x)
[logD(x)]

+ Ez∼pz (z)
{log[1 − D(G(z))]}

refers to the distribution of the real data samples from the 
actual data domain and represents the probability distri-
bution of the real data that the GAN is trying to learn and 
replicate [16]. Finally, the G output is denoted as G(z).

By optimizing the value function, the D network learns 
to become more accurate in distinguishing real data from 
generated data. This, in turn, guides the D network to 
improve its ability to generate samples that resemble the 
real data distribution, as it aims to fool D.

Predictive analysis
The predictive analysis of the complete dataset focused 
on the variables associated with a higher number of 
remote visits.

Preprocessing and exploratory data analysis
After loading the generated dataset, a series of prepara-
tion processes or preprocessing steps were conducted, 
including normalization and standardization. Numerical 
variables were standardized as categorical variables and 
encoded as the presence/absence of a single modality. 
Following this, exploratory data analysis was performed 
to uncover any discernible trends within the dataset. 
Based on the results of the exploratory analysis, the varia-
bles to be included in the subsequent analyses were care-
fully selected. Finally, a univariate analysis was performed 
on real data to establish the main associations between 
remote consultations (categorized as “one” and “more 
than one”) and main features.

Machine learning algorithms
Four machine learning (ML)-based algorithms were uti-
lized in this study:

1. LASSO-RIDGE regression (elastic model): This 
algorithm is a generalized linear regression model 
that applies a penalty to the loss function by resizing 
the regressors. The majority of regressors are shrunk 
or set to zero if they are not deemed important in 
explaining the dependent variable. This approach 
effectively reduces model complexity and safeguards 
against overfitting [17].
2. Random forest (RF) algorithm: It is a versatile 
algorithm that can be used for both regression and 
classification tasks. The algorithm belongs to the 
category of bagging methods and is widely popu-
lar in ML. RF works by constructing multiple deci-
sion tree models and aggregating their outputs to 
improve overall performance [18].
3. Gradient boosting machine (GBM): GBM is 
designed to optimize predictions by iteratively 
improving on the errors of previous tree regression 
or classification models. It belongs to the boosting 
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method category and aims to reduce the overall 
error function, allowing each subsequent model to 
build upon the strengths of its predecessors [19].
4. Single hidden layer artificial neural network 
(ANN): This approach involves a neural network 
architecture with a single hidden layer. It minimizes 
a loss function by adjusting weights that govern 
the connections between neurons in adjacent lay-
ers. ANN is commonly used for classification and 
regression problems [20].

These four ML-based models were chosen to imple-
ment different approaches for regression or classification 
tasks. RF and GBM were selected for their bagging and 
boosting techniques, respectively, to enhance predictive 
performance in regression models. LASSO-RIDGE was 

chosen as a binary regression model to compare different 
numerical approaches. ANN emerges as a potent learn-
ing algorithm extensively employed for classification (and 
regression) tasks.

Model processing and evaluation
Since the objective of this study was to predict the like-
lihood of cancer patients requiring multiple remote 
consultations, the outcome variable was “the number 
of remote consultations” dichotomized. Each classi-
fier was optimized using repeated cross-validation 
techniques, which involved calculating the mean error 
through K-fold cross-validation and determining the 
hyperparameters that yield the best predictions and 
capture the underlying structure. The dataset was 
divided into a training set (80% of the total size) for 

Fig. 1  In a conditional generative adversarial network (cGAN), both the generator (G) and the discriminator (D) are influenced by additional 
information provided as an extra input. In the context of a GAN, a noise vector (z) refers to a random input that is fed into the G model; it acts as 
a source of randomness, providing variation and unpredictability to the generated samples. Consequently, the G output is denoted as G(z). By 
manipulating the noise vector, the G can produce different outputs, allowing for the generation of diverse and unique samples. The class label 
(c) refers to the predefined category or class to which a data sample belongs. It is an essential component in supervised learning tasks, where the 
goal is to train a model to predict the class of unseen data based on labeled training examples. Each data sample is associated with a specific class 
label, indicating its category or group membership. Through the conditioning information, the cGAN can generate more targeted and contextually 
relevant outputs (prediction labels), enhancing its ability to produce desired results based on the provided extra information
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hyperparameter identification and a test set (20% of the 
total size) for model evaluation.

To assess the performance of the models, various 
metrics were utilized, including accuracy and the area 
under the receiver operating characteristic (ROC) curve 
(AUC). The AUC represents the trade-off between sen-
sitivity and 1-specificity. When the modalities of the 
outcome variable are equally distributed, the AUC 
closely approximates accuracy. However, it is also suit-
able for cases with imbalanced modality distribution. 
Each threshold provides a conditional correct classifi-
cation rate, and the AUC quantifies the probability of 
a randomly selected positive response being ranked 
higher than a randomly selected negative response.

Another evaluation metric used is the F1 score. It 
considers both precision and recall. Precision is the 
ratio of true positives to the sum of true positives and 
false positives, while recall is the ratio of true positives 
to the sum of true positives and false negatives. The F1 
score combines these two metrics and provides a bal-
anced measure of the model’s performance. It ranges 
from 0 to 1, where a higher value indicates better pre-
dictive ability.

Risk analysis
Based on the ML processes, a risk analysis was conducted 
to assess the potential increase in remote consultations 
(greater than one). We employed an odds-ratio-like anal-
ysis referred to as simulated odds ratios (SORs). Simula-
tions were performed to evaluate the risk associated with 
a higher number of consultations in target individuals. 
Around 500 simulations were conducted 150 times to 
establish a classification rate for both the cases (target 
individuals) and control individuals. Subsequently, we 
calculated the odds ratio by comparing the effective odds 
for each individual type and determined the 95% cred-
ibility intervals (95% CIs) as the effective 2.5 and 97.5 
percentiles for the SOR samples. While numerous possi-
bilities were considered, we defined four standard clinical 
conditions (targets) as follows:

• Condition 1: Younger cancer patients (mean age of 
45 years) versus older (mean age of 75 years)
• Condition 2: The presence or not of BTcP
• Condition 3: The presence or not of neuropathic pain

Statistical analysis
Univariate comparisons as t-tests were made between 
real and fake data to experiment with such results. 

F1 = 2× (precision × recall)/(precision + recall)

The number of tele-visits was chosen as the target fea-
ture and discretized in one tele-visit or > 1 tele-visits 
(“more”).

Main statistics were utilized to admit comparisons. Gen-
eration phase and comparison plots were performed using 
Python 3.8.0, and classifiers and their performances and 
univariable analyses were assessed using R 4.1.3 environ-
ment. The utilized libraries consisted of Python’s TabGAN 
and Seaborn, along with R’s caret and ggplot2.

Results
AI‑derived dataset and analyses
Table 1 presents the results of the univariate analysis con-
ducted on the data.

In the cGAN-derived dataset, the model replicated the 
same number of “fake” cancer patients and generated 218 
artificial samples [21]. In the original dataset (n = 226), 8 
patients were excluded due to incomplete data.

The analysis of the obtained dataset showed that the 
number of remote consultations [mean (µ) 2.1; standard 
deviation (σ) 1.6; median 2) was similarly distributed by 
generated and real data (means 2.2 and 2, respectively, 
p = 0.24, see Fig. 2) and almost equally split in “one” and 
“more” tele-visits (50–50% in generated data, 49.5–50.5% 
in real data).

The mean cancer patients’ age was 63.9 years (σ = 12.3) 
in real data, as not statistically different (p = 0.22) or lower 
(p = 0.11) from generated data (µ = 65.3, σ = 11.7). The 
probability of doing more than one tele-visit decreased 
by 3% for each year of age (p < 0.01); no differences were 
detected by type of data (Wald test p = 0.92) (Fig. 3).

The site of the tumor was similarly reproduced. Mela-
noma and kidney cancers were less represented in the 
real data, and these were not replicated by cGAN (Fig. 4).

The ECOG-PS was similarly distributed by type of data 
(Wilcoxon rank-sum test p = 0.6; µ = 2.4 and µ = 2.5 for real 
and generated data, respectively; same medians = 2) (Fig. 5).

No differences were found for gender (p = 0.7), bone 
metastases (p = 1.0), MED (> 60, 61% for real data and 
58.7% for generated data, p = 0.7), BTcP (p = 0.76, for real 
data 37.2% and 35.3% from the GAN), and neuropathic 
condition (40.8% for real data, 42.2% for generated data, 
p = 0.85).

Selection of the optimal ML model
Subsequently, the four ML models were evaluated. As 
90.6% of cancer patients (89.9% in real data, 91.3% in 
fake data) were metastatic, the presence of metastases 
was removed from the predictive features set.

The GBM classifier consisted of 100 trees with a maxi-
mum depth of 5 splits, a shrinkage parameter of 0.1, and 
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minimum leaf observations set to 15. For the LASSO 
model, the mixing parameter (α) was set to 0 and the 
shrinkage (λ) to 0.25. The selected RF model utilized 13 
randomly chosen variables for each tree. The best ANN 
configuration consisted of a hidden layer with 10 neu-
rons and regularization parameters set to 0.035.

The RF model outperformed all other models, demon-
strating an impressive accuracy of 0.8 on the test data. 
The performances of classifiers are described in Table 2.

The GBM demonstrated higher sensitivity, correctly 
identifying over two-thirds of cancer patients who 
required multiple teleconsultations (sensitivity = 0.69). 
In terms of specificity, RF achieved the highest score 
among the models, followed by ANN (specificity = 0.71 
for RF and 0.64 for ANN). On the other hand, LASSO 
performed poorly, incorrectly predicting that all indi-
viduals would require multiple remote consultations 
(Fig. 6).

Table 1  Univariate analysis on generated and actual data

Legend: 1n (%); 2Pearson’s chi-squared test; Wilcoxon rank-sum test. Abbreviations: ECOG, Eastern Cooperative Oncology Group; BTcP, breakthrough cancer pain; MED, 
morphine equivalent dose

Variable Generated data Real data

One N = 1121 MoreN = 1061 p-value2 One N = 1081 More N = 1101 p-value2

Age (years) 0.056 0.013
  N 112 106 108 110

  Mean (SD) 66 (12) 63 (10) 66 (12) 62 (12)

  Median (IQR) 66 (57, 76) 63 (54, 70) 67 (58, 76) 63 (53, 71)

Gender 0.058 0.043
  Female 49 (44%) 60 (57%) 49 (45%) 65 (59%)

  Male 63 (56%) 46 (43%) 59 (55%) 45 (41%)

ECOG 0.063 0.324

  N 112 106 108 110

  Mean (SD) 2 (1) 3 (1) 2 (1) 2 (1)

  Median (IQR) 2 (2, 3) 2 (2, 3) 2 (2, 3) 2 (2, 3)

Cancer
  Bladder 11 (9.8%) 8 (7.5%) 10 (9.3%) 6 (5.5%)

  Breast 14 (12%) 21 (20%) 10 (9.3%) 20 (18%)

  Gastrointestinal 31 (28%) 16 (15%) 26 (24%) 16 (15%)

  Gynecological 2 (1.8%) 3 (2.8%) 3 (2.8%) 6 (5.5%)

  Head & neck 4 (3.6%) 5 (4.7%) 6 (5.6%) 8 (7.3%)

  Kidney 0 (0%) 0 (0%) 1 (0.9%) 5 (4.5%)

  Lung 19 (17%) 15 (14%) 17 (16%) 14 (13%)

  Melanoma/skin 0 (0%) 0 (0%) 3 (2.8%) 2 (1.8%)

  Pancreas 4 (3.6%) 7 (6.6%) 2 (1.9%) 8 (7.3%)

  Prostate 10 (8.9%) 6 (5.7%) 10 (9.3%) 4 (3.6%)

  Soft tissue & bones 8 (7.1%) 12 (11%) 9 (8.3%) 13 (12%)

  Other sites 9 (8.0%) 13 (12%) 11 (10%) 8 (7.3%)

Bone metastases 0.083 0.795

  No 67 (60%) 51 (48%) 58 (54%) 61 (55%)

  Yes 45 (40%) 55 (52%) 50 (46%) 49 (45%)

BTcP 0.115 0.551

  No 78 (70%) 63 (59%) 70 (65%) 67 (61%)

  Yes 34 (30%) 43 (41%) 38 (35%) 43 (39%)

Neuropathic pain 0.242 0.161

  No 69 (62%) 57 (54%) 69 (64%) 60 (55%)

  Yes 43 (38%) 49 (46%) 39 (36%) 50 (45%)

MED 0.063 0.805

  ≤ 60 53 (47%) 37 (35%) 43 (40%) 42 (38%)

  > 60 59 (53%) 69 (65%) 65 (60%) 68 (62%)
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Fig. 2  Number of remote consultations. Actual data (from the original dataset) and those generated by the implemented deep learning approach

Fig. 3  Patients’ age. Actual data (from the original dataset) and those generated by the implemented deep learning approach
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Fig. 4  Tumor site. Actual data (from the original dataset) and those generated by the implemented deep learning approach

Fig. 5  Eastern Cooperative Oncology Group Performance Status (ECOG-PS). Data from the original and the generated dataset

Table 2  Performances of the considered machine learning algorithms. RF emerged as the top-performing model with an accuracy of 
0.8 on the test data and a specificity of 0.71

Abbreviations: RF Random forest, ANN Artificial neural network, ACC​ Accuracy, tr training, tst Test, p states for p(ACC > no information rate): it is the probability (p) of the 
accuracy (ACC​) being greater than the no information rate. F1 score is a combined metric that considers both precision and recall, providing a balanced measure of a 
model’s performance. L and U are 95% confidence intervals of accuracy

Classifier AUC​ ACC (TR) ACC (TST) L (TST) U (TST) P SENS (TST) SPEC (TST) F1

GBM 0.87 0.86 0.62 0.51 0.72 0.02 0.69 0.29 0.59

RF 0.99 1 0.8 0.7 0.88 0 0.69 0.71 0.71

LASSO 0.7 0.62 0.57 0.46 0.68 0.12 1 0 0.7

ANN 0.92 0.89 0.71 0.6 0.8 0 0.5 0.64 0.55



Page 9 of 13Cascella et al. J Anesth Analg Crit Care            (2023) 3:19 	

Simulated risk analysis
The best ML model (i.e., RF) was adopted to perform 
simulated odds ratios (sORs) of different cancer patients’ 
profiles [8]. Each individual was simulated 200 times 
to predict the risk percentage of doing more than one 
remote consultation, and such risk was replicated 300 
times. Therefore, a 300-large sample of target cancer 
patients and reference cancer patients were created as 
odds and discriminant conditions were compared as 
odds ratio measures. Conditions were left as fixed data, 
while other features were randomly chosen. In particular, 
the site of the tumor was treated as a gender-dependent 
feature, to build plausible profiles.

• Condition 1: A comparison was made between a 
young cancer patient and an older one, considering 
age as a Gaussian distribution with a standard devia-
tion of 5. Younger individuals had a mean age of 
45 years old, while older individuals had a mean age 
of 75 years old. The other features were kept as ran-
domly chosen. Older cancer patients had a − 70% risk 
of receiving multiple remote consultations (sOR = 0.3, 
95% CI = [0.2–0.4]); see Fig. 7 a and b. In particular, 
the risk was almost constant until 75 years of age and 
then decreased rapidly to 0 (Fig. 7c).
• Condition 2: Concerning the variable BTcP, the 
simulation proved a significantly higher risk for more 

Fig. 6  The area under the receiver operating characteristic (ROC) curve (AUC) of the considered models. False-positive rate (FPR) and true-negative 
rate (TPR) were considered. The plot shows the ROC curves calculated for each classifier over the entire dataset. RF offers the best performance. 
Abbreviations: LASSO, LASSO–RIDGE regression; GBM, gradient boosting machine; ANN, artificial neural network; RF, random forest

Fig. 7  Machine learning simulation on age. We simulated two cohorts of 300 cancer patients having a probabilistically Gaussian age: younger 
(45 years old) vs. older (75 years old) (SD = 5). The remaining features of the dataset were randomly generated and distributed uniformly across all 
cohorts. Older cancer patients had a significantly lower risk (− 70%) of receiving multiple remote consultations (sOR = 0.3, 95% CI = [0.2–0.4]) (red 
dashed line). This risk reduction remained relatively constant until the age of 75 and then rapidly decreased to zero (Fig. 7c). Abbreviations: sOR, 
simulated odds ratio; ODDS, odd ratios. The black dashed line symbolizes an sOR of 1, indicating a condition of no association
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than one remote consultation for cancer patients 
who suffered from this cancer pain phenomenon 
(sOR = 1.5, 95% CI = [1.1, 1.9]) (Fig. 8).
• Condition 3: Concerning neuropathic pain, our 
results did not find a significant difference between 
the two profiles. The mean sOR was 0.9 (95% 
CI = [0.7, 1.2]) (Fig. 9). At the same time, the double 
condition of BTcP and neuropathic pain was not a 
risk factor for a higher risk of more teleconsultations 
(sOR = 1.1, 95% CI = [0.8,1.5], not shown).

Discussion
There is a significant degree of uncertainty surround-
ing the appropriate care model for managing cancer 
pain through telemedicine. With a lack of established 

guidelines and limited data from existing literature, we 
have previously developed a “hybrid” approach that com-
bines both in-person and remote components [6]. By 
adopting this comprehensive and adaptable approach, we 
aim to optimize the quality of care delivered to patients 
experiencing cancer pain while utilizing the benefits of 
telemedicine [7].

Therefore, to improve the pathway, we have imple-
mented an AI technique. AI can facilitate the integra-
tion of telemedicine into clinical practice by streamlining 
various processes. For example, the implementation of 
AI-driven triage systems can effectively prioritize patient 
cases according to their severity, guaranteeing that those 
requiring immediate attention receive prompt care. 
Moreover, AI algorithms can aid in the analysis of diag-
nostic images, facilitating precise and efficient remote 

Fig. 8  Machine learning simulation on breakthrough cancer pain. We simulated two cohorts of 300 cancer patients affected or not by BTcP. The 
simulation analysis revealed a significantly higher risk for cancer patients who experienced breakthrough cancer pain (BTcP) to undergo more 
than one remote consultation (sOR = 1.5, 95% CI = [1.1, 1.9]) (red dashed line). Abbreviations: sOR, simulated odds ratio; ODDS, odd ratios. The black 
dashed line symbolizes an sOR of 1, indicating a condition of no association

Fig. 9  Machine learning simulation neuropathic pain. Regarding the neuropathic pain condition, our analysis did not observe a significant 
difference between the two profiles, with a mean simulated odds ratio (sOR) of 0.9 (95% CI = [0.7, 1.2]) (red dashed line)
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diagnoses. This not only saves valuable time but also 
guarantees that patients receive timely and accurate 
assessments, resulting in enhanced outcomes [22].

GANs have emerged as a powerful tool in medical 
research, offering new opportunities and advancements 
in various areas of healthcare. These strategies have been 
employed for data synthesis, enabling the generation of 
synthetic medical data that can be used to augment real-
world datasets and overcome limitations in data availabil-
ity [10]. In the context of our study, the generated dataset 
had a distribution that closely aligned with the reference 
dataset across various variables. The similarities between 
the generated and the reference dataset imply that the 
synthetic data accurately captures the patterns and char-
acteristics observed in real-world data. Consequently, 
by successfully replicating the distribution of these vari-
ables, the generated dataset becomes a valuable resource 
for training and evaluating ML models. These factors 
reinforce the utility and validity of GAN-based datasets 
for various applications, such as predictive modeling, 
decision support systems, and clinical research, espe-
cially when real data may be limited or restricted due to 
privacy concerns or data availability [23].

Within the framework of our telemedicine clinical 
practice, we noticed that while many cancer patients 
required a single consultation, there were individuals 
who needed a higher number of closely spaced remote 
visits [5, 13]. This evidence prompted us to investigate 
the characteristics of cancer patients who may necessitate 
more than one remote consultation to ultimately develop 
personalized care pathways and optimize resource allo-
cation. Therefore, to achieve internal and external valida-
tion and implement the chosen model in clinical settings, 
we explored various ML models. We opted to categorize 
the number of remote consultations as either “one” or 
“more than one” and utilized this classification for pre-
diction purposes.

The simulation analysis can provide a comprehensive 
examination of ML methods by enhancing the dataset 
and emphasizing distinctive data point distributions. 
This approach can offer ample opportunities for in-depth 
exploration and study, benefiting from the remarkable 
capabilities of nonparametric methods to uncover hidden 
patterns within the data [24]. In our study, the simulated 
risk analysis demonstrated that the risk of having more 
tele-visits decreased with age. Moreover, individuals 
with BTcP have an increased likelihood (approximately 
50% more) of requiring multiple remote consultations 
compared to those without this condition. These data 
reaffirm our previous findings from an analysis specifi-
cally focused on the phenomenon of BTcP. In a hierar-
chical classification, we observed that the most severe 
phenotype of cancer pain patients was characterized by 

the presence of BTcP in conjunction with younger age 
[25]. This combination of factors identified a subgroup 
of patients experiencing a more challenging pain pro-
file, highlighting the need for targeted interventions and 
comprehensive pain management strategies for this spe-
cific patient population [26].

In contrast, when examining the variable of neuro-
pathic pain, our analysis did not uncover a significant dif-
ference between individuals affected by neuropathic pain 
and those who were not. Additionally, the combination 
of BTcP and neuropathic pain did not demonstrate an 
association with an increased risk of requiring a greater 
number of teleconsultations. These findings suggest that, 
in terms of teleconsultation frequency, the presence of 
neuropathic pain alone or in conjunction with BTcP 
may not significantly impact the clinical management of 
cancer patients. Probably, these factors contribute to an 
increased demand for in-person visits [5]. These data call 
for further investigation. With the progressive implemen-
tation of the dataset, we will certainly be able to conduct 
more in-depth statistical and predictive analyses. At this 
stage, we can only speculate that the presence of neuro-
pathic pain associated with oncological conditions iden-
tifies a subgroup of particularly complex patients with a 
need for frequent hospital visits. For example, in a pre-
vious analysis, we observed a correlation between the 
number of visits and pharmacological therapies for neu-
ropathic pain and the risk of hospital readmission [5].

Limitations
Implementing GANs in medical research presents chal-
lenges alongside their potential benefits. These chal-
lenges concern data quality and interpretability of the 
generated outputs, while ethical considerations play a 
crucial role in ensuring the reliability and responsible use 
of GAN-generated results. Data quality is a fundamental 
concern as GANs require large, high-quality datasets for 
effective training. However, medical datasets often suffer 
from limitations such as missing data, imbalances, and 
potential errors, which can affect the accuracy and reli-
ability of GAN outputs. Interpretability is another issue 
surrounding GANs. The generated results may lack clear 
explanations or rationales for the decisions made by the 
model. In medical applications, where transparency and 
understanding are vital, this lack of interpretability can 
hinder trust and adoption.

Ethical considerations are paramount in using GAN 
results in medical research. These considerations encom-
pass patient privacy, informed consent, and the risk of 
unintended biases. Stringent privacy regulations must 
be followed to protect patient confidentiality when using 
medical data in GANs. Obtaining informed consent 
from patients whose data is used for training is essential. 
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Additionally, there is a potential for unintended biases 
to be encoded in the generated outputs, leading to dis-
parities or unfairness in healthcare decision-making [27]. 
Therefore, establishing robust frameworks and guide-
lines becomes imperative to govern the implementation 
of GANs, safeguard patient privacy, mitigate biases, and 
promote transparency and accountability throughout the 
development and deployment of these models [28, 29].

Furthermore, training GANs can be a challenging task 
that demands meticulous parameter tuning. Addition-
ally, GANs are susceptible to mode collapse, a phenom-
enon where the generator fails to explore the complete 
spectrum of possible data and instead produces limited 
variations. Researchers are actively investigating and 
enhancing GAN architectures and training methodolo-
gies to address these limitations and unleash the com-
plete potential of these AI strategies [30].

A significant limitation is the limited availability of 
samples, which could potentially undermine the reliabil-
ity of the analysis and increase the risk of encountering 
issues such as overfitting, where the model becomes too 
closely tailored to the available data and may not gen-
eralize well to new or unseen cases [31]. It is crucial to 
acknowledge this limitation and exercise caution when 
interpreting the results while also considering strategies 
to mitigate these challenges, such as obtaining larger 
and more diverse datasets or employing advanced regu-
larization techniques during the model training process. 
On the other hand, it would be beneficial to contemplate 
the option of augmenting the dataset to encompass addi-
tional variables such as long-term outcomes, patient sat-
isfaction, and quality of life. Furthermore, including data 
from other institutions that have implemented the same 
telemedicine pathway could provide a broader perspec-
tive and further strengthen the findings of the study.

Finally, concerning model evaluation, we conducted a 
small number of simulations to display the model’s appli-
cation. However, it is crucial to highlight that the evalu-
ated model has the capacity to be applied across a vast 
array of variable combinations. Therefore, we are pleased 
to offer the dataset and model for further investigation 
upon request.

Conclusion
As telemedicine continues to advance and gain wide-
spread acceptance, it is imperative to conduct thorough 
research and evaluation to fully uncover its immense 
potential in managing pain associated with cancer. By 
harnessing the power of telemedicine, healthcare pro-
fessionals can improve access to care, enhance patient 
outcomes, and provide comprehensive pain manage-
ment services. On the other hand, the refinement of 
the healthcare process requires scientific evidence. 

Therefore, the use of AI techniques can help bridge 
knowledge gaps and accelerate the integration of tel-
emedicine into clinical practice, providing more per-
sonalized and effective care and ultimately improving 
patient outcomes. However, it is crucial to approach the 
utilization of GANs and other AI frameworks in medi-
cal research with careful consideration, transparency, 
and a comprehensive understanding of their capabili-
ties and limitations. Lastly, although the study primar-
ily focused on evaluating the performance of various 
ML algorithms, it would be beneficial to enhance it 
by comparing the AI framework’s performance with 
standard clinical approaches.
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