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Anesthesia and cancer recurrence: 
an overview
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Abstract 

Several perioperative factors are responsible for the dysregulation or suppression of the immune system with a possi-
ble impact on cancer cell growth and the development of new metastasis. These factors have the potential to directly 
suppress the immune system and activate hypothalamic-pituitary-adrenal axis and the sympathetic nervous system 
with a consequent further immunosuppressive effect.

Anesthetics and analgesics used during the perioperative period may modulate the innate and adaptive immune sys-
tem, inflammatory system, and angiogenesis, with a possible impact on cancer recurrence and long-term outcome. 
Even if the current data are controversial and contrasting, it is crucial to increase awareness about this topic among 
healthcare professionals for a future better and conscious choice of anesthetic techniques.

In this article, we aimed to provide an overview regarding the relationship between anesthesia and cancer recurrence. 
We reviewed the effects of surgery, perioperative factors, and anesthetic agents on tumor cell survival and tumor 
recurrence.
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Introduction
Surgery represents one of the leading treatments for 
the therapeutic management of several kinds of tumors. 
However, at the same time, surgery can have a direct 
and an indirect effect on tumor cell survival leading to 
tumor recurrence. Surgery can lead to the release of can-
cer cells into the bloodstream during tumor manipula-
tion with consequent metastatic spread to distant organs 
[1]. Furthermore, even with clear resected surgical mar-
gins, minimal residual disease may remain and flourish 
with consequent local or lymphatic spread [2]. Addition-
ally, several perioperative factors, such as inflammatory 
response to surgery, hypothermia, blood transfusion, 
tissue hypoxia, hyperglycemia, post-operative pain, 
can create a state of relative immunosuppression [3, 4]. 
Stress factors also have the potential of activating the 

systemic inflammatory response and enhancing tumor 
growth, with consequential increasing the risk of meta-
static recurrence [5]. Then, the aforementioned fac-
tors have also the potential of creating an appropriate 
microenvironment for tumor growth through the release 
of hormonal mediators (i.e., catecholamines, prosta-
glandins), cytokines (e.g., interleukin-6, IL-4 and IL-10, 
TGF-β) and the upregulated expression of the transcrip-
tion factor hypoxia-inducible factor 1-alpha (i.e., HIF1A) 
with consequent enhancement of angiogenesis path-
ways, cell proliferation, and the metastatic ability of can-
cer cells [6–8]. Not only, surgical stress can also trigger 
the hypothalamic-pituitary-adrenal axis and the sympa-
thetic nervous system which in turn also regulates the 
immune response with the consequent further suppres-
sion of cell immunity [9].

Likewise, anesthesia techniques may affect metastatic 
progression of tumor cells [10]. In fact, anesthetic drugs 
can play a modulatory effect on the immune system, on 
systemic inflammatory response, on neuroendocrine 
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stress response and on cancer signaling pathways [11–13]. 
The influence of the anesthetic technique on neuroen-
docrine, inflammatory, and immune responses during 
surgery can alter local and systemic immunity with con-
sequent boosting the tumor growth factors production 
and loco-regional recurrence and metastasis [14]. Even 
more, anesthetic-analgesic drugs seemed also to mediate 
the expression of specific genes or molecular pathways 
involved in the control of differentiation, cell growth, and 
of tumor progression [11]. Interestingly, evidence sug-
gested that propofol may have a potential antitumor effect 
due to the regulation of mRNA expression [15]. Several 
preclinical and clinical studies have already shown the 
potential impact of anesthetics and adjuvants on cancer 
recurrence and survival [10]. What seems to emerge from 
the existing literature is that opioids can suppress the 
humoral immune response and can have pro-angiogenic 
effects, whereas regional anesthesia techniques have been 
associated with lower rates of cancer recurrence [16–18]. 
Even more, it seemed that total intravenous anesthesia 
(TIVA) was associated with improved recurrence-free 
survival in comparison to volatile anesthesia [19]. Thus, 
evidence is arising about the possible relation between 
anesthesia technique and cancer recurrence, however, 
a huge limitation to the current literature is represented 
by the impossibility of evaluating the effect of each single 
drug on cancer recurrence, since anesthesia requires a 
combination of different classes of anesthetics (i.e., hyp-
notic, analgesic). Consequently, further studies are needed 
on this topic.

Accordingly, it is crucial for healthcare personnel to 
consider the possible relation and implication between 
anesthesia, perioperative stress factors and cancer for a 
future better and conscious choice of anesthetic tech-
nique with the goal of improving cancer outcome. In this 
article, we aimed to provide an overview regarding the 
relationship between anesthesia and cancer recurrence. 
We reviewed the effects of surgery, perioperative factor, 
and anesthetic agents on tumor cell survival and tumor 
recurrence.

Perioperative metastasis
Perioperative stress factors trigger physiological 
responses that in turn can create an appropriate micro-
environment for the growth of pre-existing micro-meta-
static, for the formation of new ones and for their spread 
[20]. Several perioperative variables (i.e., the inflamma-
tory response to surgery, hypothermia, and blood trans-
fusion) represent important risk factors responsible for 
creating a state of relative immunosuppression and of 
increasing vulnerability to cancer recurrence.

Perioperative metastasis survival and growth are medi-
ated through various mechanisms [21]:

–	 Increase shedding of cancer cells due to mechanical 
manipulations of the tumor during surgery [1];

–	 Activation of inflammatory response [22];
–	 Modulation of immune function [23];
–	 Triggering the neuroendocrine and paracrine stress 

responses [24];
–	 Activation of pro-angiogenic signaling pathways [25];
–	 Expression of specific genes and/or molecular 

pathways [26].

Metastasis can occur through transcoelomic, lym-
phatic, and/or hematogenous routes. Transcoelomic 
spread refers to the diffusion of cancer cells to the peri-
toneal cavity, due to the migration of a primary cancer 
of the abdomen/pelvis or due to the systemic spread of 
another kind of primary cancer [27]. During abdomi-
nal and pelvic operation, surgical manipulation can be 
responsible for intraperitoneal seeding [28]. Even more, 
lymphatic network is commonly increased in solid 
tumors, especially in tumor margin and peritumor area 
and lymph flow that drains tumors is often increased, 
with increased interstitial fluid pressure and conse-
quent altered lymphatic drainage [29–31]. Consequently, 
mechanical disruption and manipulation of the cancer 
during surgery may facilitate the dissemination of tumor 
cells also through lymphatic routes [32]. In fact, surgical 
incision may be responsible for endothelial disruption 
and consequent increase in the hydrostatic and oncotic 
pressures, thus favoring migration of cancer cells in the 
lymphatic network and subsequent dissemination. Addi-
tionally, physiological response to surgical stress led to 
an overexpression of lymphangiogenic factors (i.e., vas-
cular endothelial growth factor (VEGF), prostaglandins, 
and platelet-derived growth factor (PDGF)) with conse-
quent further enhance of tumor dissemination [33–35]. 
Surgery may also increase the hematic release of circulat-
ing tumor cells (CTC); the levels of CTC were found to 
be increased during different kind of surgeries [36–39]. 
Not all the CTC are able to seed with the consequent 
formation of distant metastasis. To accomplish this pro-
cess, CTC have to escape circulating immune defenses 
and to migrate and invade fertile zone to colonize. Sev-
eral inflammatory mediators and hypoxic conditions 
are responsible of creating vulnerable areas where CTC 
can migrate and proliferate: the so-called pre-metastatic 
niche [40].

The activation of inflammatory system due to surgi-
cal stress lead to the migration of macrophages, neu-
trophils, fibroblasts and mesenchymal stem cells on the 
site of the surgery [41]. These cells secrete several factors 
(e.g., VEGF, PDGF, epidermal growth factor-EGF, pros-
taglandin, matrix metalloproteinases (MMP)), respon-
sible for promoting cancer growth, lymphangiogenesis, 
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angiogenesis, and consequent dissemination [42]. Prosta-
glandins play an important role in increasing the meta-
static invasiveness of cancer cells through the activation 
of several receptors (e.g., B2-adrenergic, and cyclooxy-
genase-2 receptors) [43, 44]. Even more, MMP and 
VEGF are responsible for favoring tumor cell adhesion, 
angiogenesis, and invasiveness of cancer cells [42, 45]. 
Interestingly, platelet seemed to play an important role 
in immune escaping of cancer cells [46]. In fact, micro-
clot formation can protect CTC from natural killer (NK), 
from cell-mediated detection, and promotes CTC adhe-
sion to the endothelium. Even more, activated platelets 
can release soluble mediators (i.e., transforming-growth 
factor beta -TGF-β, PDGF and adenosine triphosphate) 
with important effects on immune system: modula-
tion of the NK activity and of the vascular permeability 
[47]. Furthermore, local and systemic immune responses 
to surgery lead to pro-inflammatory and immuno-
suppressive consequences with deeply suppression of 
cell-mediated immunity (CMI) [6]. The consequent 
immunosuppression is due to the release of several 
mediators such as cytokines (e.g., Interleukin-6), with an 
inhibitory effect on NK activity. Remarkably, several tri-
als have found an increased level of Th2 lymphocytes and 
decrease level of Th1 lymphocytes with altered Th1/Th2 
ratio during cancer surgery [48]. These responses may 
represent another important aspect to consider regarding 
the relation between perioperative stress response and 
immunosuppression.

The activation of neural signaling is induced not only 
by surgical tissue trauma but also by other stress factors 
(e.g., hypothermia, tissue hypoxia, and patient anxiety). 
The activation of neural signaling (i.e., the sympathetic 
nervous system and the hypothalamic–pituitary–adrenal 
axis) led to the release of stress hormones (i.e., catecho-
lamines, opioids, and glucocorticoids) with important 
consequences on cancer cell invasiveness [49]. The con-
sequent hormonal storm stimulates inflammatory and 
immunologic response. Afferent nerves from the site of 
tissue damage triggers the activation of the HPA axis and 
sympathetic nervous system with consequent secretion 
of ACTH, cortisol, catecholamines, aldosterone, vaso-
pressin, and glucagon. Cortisol are natural steroid hor-
mones that bind the transcription factor glucocorticoid 
receptor (GR). The hypersecretion of cortisol lead to the 
upregulation of anti-inflammatory protein and down-
regulation of pro-inflammatory protein expression. Even 
more, cortisol influences the adaptive and innate immu-
nity systems. Because of increased cortisol production, 
the number of circulating monocytes, macrophage and 
dendritic cells are reduced. Even more, another impor-
tant consequence is represented by reduction of circu-
lating T cells, with a shift from a pro-inflammatory Th1 

phenotype to an anti-inflammatory Th2 phenotype. Glu-
cocorticoids also effects the expression of genes that reg-
ulate the inflammatory response (i.e., NF-KB and AP-1) 
and inhibits the activation, proliferation, and produc-
tion of immunoglobulins by B cell lymphocyte [50]. Even 
more, the activation of the neuroendocrine response is 
also responsible of changing tumor microenvironment, 
and remodeling lymphatic and blood vasculature [51]. 
All these processes are implied in tumor recurrence. 
Stress hormones were reported to downregulate NK, 
cytotoxic T lymphocytes activity, and macrophage motil-
ity/phagocytosis [52, 53]. Furthermore, catecholamine 
bind β-adrenoceptors on cell surface with activation of 
calcium-cAMP signaling and consequent enhancement 
of pro-metastatic factors transcription (e.g., HIF, VEGF, 
and MMP) [54]. Beta-adrenoreceptors have been found 
in several cancer cells (i.e., breast, prostate, lung, liver) 
[54]. The activation of these signaling pathways leads to 
increase tumor cell growth and their invasiveness.

Finally, another important aspect is represented by the 
possible correlation between stress response and expres-
sion of specific genes or molecular pathways with the 
consequent changes in the cell signaling [26, 55, 56]. The 
epigenetic modification of gene expression involved during 
surgery is due to DNA methylation, histone modifications, 
chromatin, and noncoding RNAs (ncRNAs) remodeling 
[57]. Furthermore, the disruption of local vasculature dur-
ing surgery, lead to hypoperfusion, ischemia, and hypoxia. 
Hypoxia stimulates the upregulated expression of the 
transcription factor hypoxia-inducible factor 1-alpha (i.e., 
HIF1A) with consequent promotion of angiogenesis, cell 
proliferation, and metastasis [58]. Furthermore, HIF pro-
motes the secretion of angiogenic factors (e.g., VEGF and 
angiopoietin 2) with a further effect on tumor progression 
and metastatic spread [59]. The level of HIF1A has been 
correlated with tumor progression, metastatic spread and 
outcome [60]. Hypoxic conditions lead also to increased 
production of reactive oxygen species (ROS). The conse-
quent oxidative stress can trigger several transcription fac-
tors (i.e., NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/
Wnt, and Nrf2) that in turn lead to the expression of 
growth factors, inflammatory cytokines and chemokines 
[61]. The effect of surgery and of anesthetic techniques on 
cancer recurrence are summarized in Tables  1 and 2. A 
schematic representation of perioperative metastasis due 
to surgical manipulation is presented in Fig. 1.

Anesthetic agents
Volatile and intravenous anesthetics
The increasing interest in the impact of anesthetics and 
cancer progression has stimulated several in  vivo and 
in vitro studies on the relation between different kinds of 
anesthetics used during surgery and cancer development 



Page 4 of 12Brogi and Forfori ﻿J Anesth Analg Crit Care            (2022) 2:33 

and progression [48, 62]. Even if the evidence is conflict-
ing, halogenated anesthetics seemed to present several 
pro-inflammatory and immunosuppressive effects that 
can have an important impact on enhancing metastasis 
formation [63]. Volatile anesthetic agents are implied in 
the upregulation of hypoxia-inducible factors [64]. Sev-
eral trials are showed that the exposure of cancer cells to 
isoflurane and sevoflurane led to upregulation of HIF-1α, 
HIF-2α, growth factor and increase transcription of pro-
metastatic factors (VEGF, angiopoietin-1, proteases 
MMP-2 and MMP-9, insulin-like growth factor IGF-1) 
which enhanced tumor cell proliferation, increased angi-
ogenesis, and cell migration [65, 66]. Furthermore, halo-
genated anesthetics inhibit the activity of the immune 
system; reduces Th1/Th2 ratio, impairs NK cell activity, 
induces T cell and B cell apoptosis [67–69]. Consequently, 
the volatile anesthetic may promote immunosuppression 
and the creation of a pro-malignant environment that 
supports the growth of residual cancer cells.

On the other hand, propofol presents anti-inflamma-
tory and immunosuppression properties [70–72]. Several 
studies have shown that propofol could inhibit adhesion, 
migration, invasiveness of cancer cells and induce apop-
tosis [73, 74]. Propofol presents anti-inflammatory prop-
erties through the suppression of prostaglandin and 
inflammatory cytokine production and the inhibition of 
cyclooxygenase (COX) activity [75]. Even more, propofol 
may prevent immunosuppression through the preserva-
tion of NK cell function. Not only propofol preserved NK 

activity, it seemed that propofol could also stimulate the 
proliferation of NK cells through the increased expression 
of granzyme B, IFN-γ, and activating surface receptors 
(e.g., CD16, NKp30, NKp44, and NKG2D) [76–78]. In fact, 
increased NK cell infiltration of tumors is reported after 
the administration of propofol. Furthermore, propofol 
could increase cytotoxic T lymphocyte activity and does 
not affect the Th1/Th2 ratio [79].

Propofol may also modulate genetic signaling pathways 
with important consequences on carcinogenesis:

–	 Inhibition of HIF-1α protein synthesis induced by 
hypoxia [80];

–	 Inhibition of the mRNA expression of MMP-2 and 
MMP-9 and p38 MAPK signaling (signaling pathway 
regulating proliferation, cell motility, and survival) [81];

–	 Inhibition of the NF-κB pathway [82];
–	 Downregulation of S100A4 in endothelial cells and 

suppression of VEGF expression from cancer cells 
with consequent anti-angiogenic effects [83, 84];

–	 Upregulating miRNA expression (tumor suppres-
sors and by inhibiting the expression of miRNAs that 
works as oncogenes) [85];

–	 Inhibiting histone acetylation [86].

Noteworthy, signaling pathways are not usually inde-
pendent and participate in a crosstalk to create a regula-
tory network. Consequently, propofol may affect several 
pathways with important regulation on genes expression. 

Table 1  Effects of surgery on cancer recurrence

Effects of surgery on cancer recurrence

Action Consequences

Direct effect 
on tumor 
cell survival

Surgical tumor manipulation Release of cancer cells into the bloodstream ➔ metastatic spread to distant 
organs

Surgical tumor manipulation Intraperitoneal seeding➔ Transcoelomic spread

Surgical tumor manipulation and incision Endothelial disruption ➔ increase hydrostatic and oncotic 
pressure➔dissemination of tumor cells through lymphatic routes

Minimal residual disease in surgical margins Local or lymphatic spread

Action Consequences

Indirect 
effect on 
tumor cell 
survival

Physiological response to perioperative stress factors Activating the systemic inflammatory response➔ migration of macrophages, 
neutrophils, fibroblasts on the site of the surgery ➔ Release of cytokines, growth 
factors and prostaglandin➔ promoting cancer growth, lymphangiogenesis, 
angiogenesis, and consequent dissemination

Physiological response to perioperative stress factors Activating the systemic inflammatory response➔ state of relative immunosup-
pression➔ immune escaping of cancer cells➔appropriate microenvironment for 
tumor growth

Physiological response to perioperative stress factors Trigger the hypothalamic-pituitary-adrenal axis and the sympathetic nervous 
system➔ release of hormonal mediators➔ enhance tumor growth

 Physiological response to perioperative stress factors Expression of specific genes and/or molecular pathways➔ promotion of angio-
genesis, cell proliferation, and metastasis

Physiological response to perioperative stress factors Activation of pro-angiogenic signaling pathways➔ increasing the metastatic 
invasiveness
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Propofol with its anti-inflammatory and pro-immunity 
effects has been suggested to have a positive impact on 
long-term survival and cancer outcome [87–90]. How-
ever, no unified conclusion has been reached and further 
evidence is needed to come to a clear conclusion. In 2019, 
a randomized controlled trial was published comparing 
the incidence of metastatic breast cancer recurrence in 
patients who received regional anesthesia and propofol 
versus general anesthesia with volatile anesthetic sevoflu-
rane and opioid analgesia [91]. The studies included 2108 
women who underwent breast surgery. Cancer recur-
rence was similar between the groups. Contrarily, a 2019 

meta-analysis by Yap et  al. analyzed the effects of anes-
thetics on cancer recurrence and survival [19]. The study 
included ten trials. The authors found that TIVA was 
associated with improved recurrence-free survival.

In 2021, Ramirez et  al. performed a review describing 
how drugs may regulate important function on immune 
and cancer cells [92]. The authors presented several pre-
clinical and clinical studies and explained the effects of 
anesthetics on cancer cells. The authors presented 21 ret-
rospective and 4 RCTs studies comparing the effects of 
TIVA versus volatile anesthesia. They also presented 28 
retrospective and 9 RCTs studies assessing the effects of 

Table 2  Effects of anesthetics on cancer recurrence

Effects of anesthetics on cancer recurrence

Type of anesthetics Effects

Volatile anesthetics -Pro-inflammatory and immunosuppressive action
-Reduces Th1/Th2 ratio
-Impairs NK cell activity
-Induces T cell and B cell apoptosis
-Upregulation of hypoxia-inducible factors (HIF-1α, HIF-2α,)
-Increase transcription of pro-metastatic factors (VEGF, angiopoietin-1, pro-
teases MMP-2, and MMP-9)
-Enhanced tumor cell proliferation
-Increase angiogenesis, and cell migration

Intravenous anesthetics -Anti-inflammatory and immunosuppression properties
-Suppression of prostaglandin and inflammatory cytokine production
-Inhibition of cyclooxygenase (COX) activity
-Stimulate the proliferation of NK cells
-Increase expression of granzyme B and IFNγ
-Increase cytotoxic T lymphocyte activity
-Does not affect the Th1/Th2 ratio
-Modulate genetic signaling pathways
-Inhibits histone acetylation

Ketamine,  Thiopental -Suppress the activity of NK cells
-Induce apoptosis in lymphocytes
-Inhibits the functional maturation of dendritic cells
-Reduce the synthesis of pro-inflammatory cytokines

Opioids -Modulate wound healing
-Immunosuppression effects
-Inhibits natural killer cell activity
-Inhibits responses of T and B cells to mitogens
-Inhibits antibody production
-Promotes lymphocyte apoptosis,
-Reduces the differentiation of T cells
-Inhibits phagocytic activity
-Inhibits of the release of cytokine/ chemokine production

Local anesthetics -Activates apoptotic pathway
-Inhibits tumor cell growth and migration
-Increases the activity of NK
-Increases the number of T-helper (Th) cells
-Preserves Th1/Th2 cells ratio
-Preserves IFN-gamma concentrations
-Modulates gene expression
-Increases IL-4 levels
-Decreases IL-10, IL-8, TNF-alfa production

NSAIDs and COX-2 inhibitors -Inhibits the cyclooxygenase 1 and the cyclooxygenase 2
-Reduces prostaglandin synthesis

Paracetamol -Inhibits prostaglandin endoperoxide H2 synthase and cyclooxygenase activity
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regional anesthesia on long-term outcome. Preclinical evi-
dence showed that volatile anesthesia regulates important 
function in cancer cells and that they can directly modify 
intracellular signal involved in proliferation, migration 
and invasion. The authors concluded that “…whether 
volatile anesthetics have a deleterious effect on cancer 
recurrence and survival remains a controversial issue…”; 
however, Ramirez explained how “…volatile anesthesia 
regulate important function in cancer cells.”. This evidence 
suggested that anesthetics may play a potential impact on 
cancer recurrence, at least from a cellular point of view. 
Of course, we cannot speculate that the result of preclini-
cal studies could be translated into clinical practices.

Finally, ketamine and thiopental present immune 
effects. Thiopental inhibits the function of neutrophils 
and NK [93]. Ketamine may suppress the activity of 
NK cells, induce apoptosis in lymphocytes and inhibits 
the functional maturation of dendritic cells [94]. Keta-
mine may also reduce the synthesis of pro-inflammatory 
cytokines, (e.g., IL-6, TNF-α) [95]. However, the evidence 
regarding the relation between ketamine and thiopental 
and cancer is scarce and far to be conclusive.

Opioids
Increasing evidence suggests that, beyond their primary 
analgesic function, opioids present several physiologi-
cal effects. Opioids modulate wound healing and can-
cer progression through their endothelial action and 
through their influence on angiogenesis [17]. Further-
more, opioids are known to act on the immune system 
with immunosuppression effects [16, 96]. Through the 

mu-opioid receptor (MOR) or non-opioid receptors 
(toll-like receptors) expressed by immune cells, opioids 
play their direct effect on the immune system, inhibiting 
natural killer cell activity, inhibiting responses of T and 
B cells to mitogens and antibody production [97–100]. 
Furthermore, opioids can inhibit several neutrophils and 
macrophages activity: inhibition of phagocytic activ-
ity and inhibition of the release of cytokine/chemokine 
production [101]. Moreover, opioids act indirect effects 
on the immune system through the sympathetic nerv-
ous system and the hypothalamic-pituitary-adrenal axis 
[102, 103].

The interplay between opioids and cancer, however, 
is complex and far to be understood deeply. It was also 
observed that neutrophils, macrophages and T cells also 
release endogenous opioid peptides with consequent 
reduction of inflammation and pain through the binding 
of peripheral opioid receptors [96, 104]. Noteworthy, it 
is important to take into account that the control of pain 
may have a beneficial indirect effect on immunity. The 
balance between the immunosuppressive effect of the 
opioid and the reduction of immunosuppression of pain 
is difficult to foresee [105].

In brief, different kinds of opioids seemed to act differ-
ent effects in in vitro/in vivo model:

–	 Morphine: suppresses the activity of NK cells, pro-
motes lymphocyte apoptosis, reduces the differentia-
tion of T cells, and stimulates angiogenesis [99];

–	 Fentanyl: decrease the activity of NK cells and 
increase the number of regulatory T cells [106];

Fig. 1  Schematic representation of perioperative metastasis due to surgical manipulation
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–	 Sufentanil: decrease the activity of NK cells, increase 
the number of regulatory T cells, inhibits leukocyte 
migration [107];

–	 Alfentanil: decreases the activity of NK cells [108];
–	 Remifentanil: suppress the activity of NK cells and 

lymphocytic proliferation [109].

Interestingly, methyl-naltrexone, an opioid antagonist, 
seemed to inhibit tumor cell invasion and implantation, 
while continuous infusion of MNTX decreases primary 
tumor growth and development of lung metastasis [110].

Local anesthetics
The implementation of regional anesthesia/analgesia 
techniques seemed to have a positive impact on reducing 
cancer recurrence via several mechanisms [111]:

–	 Reduces the stress response to surgery (via pain con-
trol or sympathetic block) and reduces the levels of 
cortisol, β-endorphin, and epinephrine [112, 113];

–	 Reduces the need for opioids or volatile agents 
(indirect effect);

–	 Activates apoptotic pathway [114];
–	 Inhibits tumor cell growth and migration [115];
–	 Increases the activity of NK [116];
–	 Increases the number of T-helper (Th) cells, preserved 

the ratio of Th1 to Th2 cells [117];
–	 Preserves IFN-gamma concentrations [118];
–	 Modulates gene expression, DNA demethylation [119];
–	 Increases IL-4 and decreasing IL-10, IL-8, TNF-

alfa [120].

Besides the possible beneficial mechanism triggered by 
regional anesthesia, there is no strong evidence regarding 
the effect of regional anesthesia on cancer recurrence. Xu 
et al. evaluated the effects of epidural anesthesia-analgesia 
on recurrence-free survival after lung cancer surgery. The 
authors compared two groups: general anesthesia versus 
general anesthesia and regional anesthesia groups [121]. 
The authors concluded that regional anesthesia did not 
improve recurrence-free survival compared with general 
anesthesia alone. In both groups, general anesthesia was 
induced with propofol, sufentanil, and rocuronium while 
anesthesia was maintained with propofol and/or sevoflu-
rane (with or without nitrous oxide inhalation). Even more, 
dexmedetomidine was given at the discretion of anesthe-
siologists. Consequently, due to the high heterogeneity of 
drugs administered (propofol, sevoflurane, opioids, dexme-
detomidine), it was not possible to come to any conclusion 
regarding general anesthesia. It was impossible of evalu-
ating the effect of each single drug on cancer recurrence. 
Similarly, in Du et al., the authors concluded that regional 
anesthesia did not improve recurrence-free survival 

compared with general anesthesia alone [122]. Even more, 
general anesthesia was induced with midazolam, propo-
fol, sufentanil, and rocuronium and maintained with either 
intravenous, inhalation, or combined. A 2015 meta-analy-
sis including 10 studies showed improved overall survival 
when neuraxial analgesia was used in radical prostatectomy 
[123]. On the other hand, as aforementioned mentioned, 
in 2019 a randomized controlled trial did not find any dif-
ference in cancer recurrence between the groups receiving 
regional anesthesia and propofol versus general anesthesia 
with volatile anesthetic sevoflurane and opioid analgesia 
[91]. Several studies were conducted on this topic; however, 
due to the heterogeneity of the trials, it is difficult to draw 
any conclusion from the existing literature [118, 124–126].

NSAIDs, COX‑2 inhibitors, paracetamol, alpha‑2 
adrenoceptor agonists
Other drugs commonly used in the perioperative period:

–	 NSAIDs and COX-2 inhibitors: represented the most 
widely painkiller used for the management of perio-
perative analgesia. NSAIDs inhibit the cyclooxyge-
nase 1 (COX-1) and the cyclooxygenase 2 (COX-2) 
enzymes with consequent anti-inflammatory, anal-
gesic and antipyretic effects. Several trials have 
already shown the potential benefits of NSAIDs in 
the prevention of human cancer [127]. Above all, 
the long-term use of daily low-dose aspirin has been 
already related to the risk reduction of several kind 
of cancers: from colon, breast, lung, and prostate 
cancer [127, 128]. COX is frequently overexpressed 
in several cancers with important effects on can-
cer progression with an important contribution in 
tumorigenesis [127, 129–131]: increased produc-
tion of prostaglandins, inhibition of apoptosis and 
promotion of angiogenesis, increased cell motil-
ity and invasion and modulation of inflammation 
and immune function [132, 133]. NSAIDs inhibit 
cyclooxygenase enzymes, leading to reduction of 
prostaglandin synthesis (i.e., prostaglandin E2, PGE2) 
and promote immune responses [134]. In particu-
lar, PGE2 plays a crucial role in promoting cancer 
progression; enhancement of cellular proliferation, 
promotion of angiogenesis, inhibition of apoptosis, 
stimulation of invasion/motility, and suppression of 
immune response [44]. Nevertheless, NSAIDs can 
be administered in combination with opioids or with 
paracetamol to increase the analgesic efficacy and to 
reduce the daily consumption of opioids [135]. Con-
sequently, the possible survival benefits of receiv-
ing NSAIDs may be also due to their opioid-sparing 
effects of the usage of multimodality therapy in the 
perioperative settings [136].
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–	 Paracetamol: inhibits prostaglandin endoperoxide H2 
synthase and cyclooxygenase activity with pain-reliev-
ing and antipyretic properties. However, paracetamol 
has no anti-inflammatory effects. Paracetamol can be 
administered in combination with opioids or NSAIDs 
to increases the analgesic efficacy and reduce daily 
morphine consumption [137]. Analyzing the current 
literature, the relationship between paracetamol usage 
and cancer recurrence are conflicting: increased risks 
for urinary tract cancers and decreased risk for ovar-
ian cancer [138, 139]. However, the results reached so 
far have been inconsistent.

–	 Alpha-2 adrenoceptor agonists: dexmedetomidine 
and clonidine are alpha-2 adrenoceptor agonists 
mainly used for sedation and as part of multimodal 
opioid-sparing analgesia. Alfa-adrenoceptors are 
found to be expressed in breast cancer, both epithe-
lial and stromal cells [140]. Consequently, alfa-mod-
ulators may affect cancer progression and recur-
rence. However, evidence is scarce regarding the 
relation between dexmedetomidine and/or cloni-
dine and cancer recurrence and far to be conclusive 
[141–143].

Discussion and conclusions
Overview articles represent a useful aid for addressing 
bias and concerns or to put light on the insufficiency of 
the current literature and to stimulate further research 
in a particular field. We decided to provide an overview 
only on the impact of anesthetic techniques and surgery 
on cancer recurrence because the current data are con-
troversial and contrasting. Our aim was to summarize 
content from several articles and provide the reader with 
a general understanding of the possible relation between 
anesthetics and cancer.

It is also important to highlight that, up to now, the 
heterogeneity of the factors implied in cancer recur-
rence during surgery are high and the heterogeneity of 
the current literature on cancer and anesthesia would 
make impractical, or at least hard, to summarize and to 
come to any kind of conclusion. Not only the anesthetic 
technique but also several perioperative factors can influ-
ence immune surveillance and inflammatory responses 
and they may favor proliferation of metastasis. Further-
more, the impact of anesthetics technique depending on 
the type of cancer could make the discussion confusing 
considering the vast and divergent literature available on 
this topic. This would made even more difficult to come 
to any kind of conclusion.

Another important limitation is represented by the fact 
that it is impossible to evaluate the effect of each single 
drug on cancer recurrence, since anesthesia requires a 

combination of different classes of drugs (i.e., hypnotic, 
analgesic). The difference in baseline characteristics 
between groups (i.e., ASA), the different concentration 
of volatile anesthetics used in the clinical studies, the 
different duration of the surgery and the extension of 
surgical incision (minimally invasive vs. open surgery) 
represented important confounding factors. Even more, 
the majority of the data looking at the relationship of 
these techniques and cancer outcome in different kind of 
tumor originates from retrospective studies.

Surely, evidence is arising about the possible impact of 
anesthesia technique, perioperative period, cancer recur-
rence and long-term outcome. Even if the current data 
are controversial and contrasting, it is crucial to increase 
awareness about this topic among healthcare profession-
als for a future better and conscious choice of anesthetic 
techniques. Consequently, further trials are needed for 
a deeper understanding of the aforementioned mecha-
nisms and on the actual impact of anesthetic techniques 
on the long-term survival. At this stage of the clinical 
research, we think that share awareness represents the 
major goal in an informative way.
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