
REVIEW Open Access

Machine learning in perioperative
medicine: a systematic review
Valentina Bellini1, Marina Valente2, Giorgia Bertorelli1, Barbara Pifferi1, Michelangelo Craca1, Monica Mordonini3,
Gianfranco Lombardo3, Eleonora Bottani3, Paolo Del Rio2 and Elena Bignami1*

Abstract

Background: Risk stratification plays a central role in anesthetic evaluation. The use of Big Data and machine
learning (ML) offers considerable advantages for collection and evaluation of large amounts of complex health-care
data. We conducted a systematic review to understand the role of ML in the development of predictive post-
surgical outcome models and risk stratification.

Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines,
we selected the period of the research for studies from 1 January 2015 up to 30 March 2021. A systematic search in
Scopus, CINAHL, the Cochrane Library, PubMed, and MeSH databases was performed; the strings of research
included different combinations of keywords: “risk prediction,” “surgery,” “machine learning,” “intensive care unit
(ICU),” and “anesthesia” “perioperative.” We identified 36 eligible studies. This study evaluates the quality of
reporting of prediction models using the Transparent Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) checklist.

Results: The most considered outcomes were mortality risk, systemic complications (pulmonary, cardiovascular,
acute kidney injury (AKI), etc.), ICU admission, anesthesiologic risk and prolonged length of hospital stay. Not all the
study completely followed the TRIPOD checklist, but the quality was overall acceptable with 75% of studies (Rev #2,
comm #minor issue) showing an adherence rate to TRIPOD more than 60%. The most frequently used algorithms
were gradient boosting (n = 13), random forest (n = 10), logistic regression (LR; n = 7), artificial neural networks
(ANNs; n = 6), and support vector machines (SVM; n = 6). Models with best performance were random forest and
gradient boosting, with AUC > 0.90.

Conclusions: The application of ML in medicine appears to have a great potential. From our analysis, depending
on the input features considered and on the specific prediction task, ML algorithms seem effective in outcomes
prediction more accurately than validated prognostic scores and traditional statistics. Thus, our review encourages
the healthcare domain and artificial intelligence (AI) developers to adopt an interdisciplinary and systemic approach
to evaluate the overall impact of AI on perioperative risk assessment and on further health care settings as well.
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Background
Risk stratification is a central part of the anesthetic
evaluation. In fact, through the identification of high-
risk patients, it is possible to conduct a specific risk/
benefit analysis, to reduce the risk of unexpected com-
plications, to achieve a targeted perioperative
optimization, to carefully plan the anesthesiologic man-
agement, and to provide an accurate and precise in-
formed consent [1–3].
Over time, several scores have been published, from

the most generic, like the American Society of Anes-
thesiologists Physical Status (ASA-PS) [4], to the most
specific ones, as the European system for cardiac op-
erative risk evaluation (EuroSCORE) [5] or the Gen-
eral Surgery Acute Kidney Injury Risk Index
Classification System [6]. Unfortunately, these scores
have some limits, mainly due to the lack of tailored
predictions.
In the last decade, the interest about artificial

intelligence (AI), including machine learning (ML)
methods, have seen an exponential increase [2]. Consid-
ered an extension of traditional statistics, AI differs from
standard approaches for its ability to learn from exam-
ples and mistakes, to improve continuously with the
introduction of new data, and to create a model for indi-
vidualized patient care [7].
Thanks to the growing informatization of health

systems, large amounts of data have become available.
The implementation of new technologies and the de-
velopment of prediction algorithms paved the way for
novel possibilities to exploit these huge data collec-
tions. Among the several branches of healthcare in
which ML aroused enthusiasm, its application in peri-
operative medicine is showing promising results. In
fact, in consideration of its specific characteristics,
this analytical technique is suitable for the creation of
predictive models, specifically concerning the
optimization of resources and the development of
warning score systems [8, 9]. The application of these
algorithms allows early detection and prediction of
acute critical illness, facilitating the management of
high-risk patients [10].
More recently, COVID-19 pandemic lighted on the

importance of AI-based models for the fast development
of algorithms that could integrate readily available data,
helping the hospital systems and the clinicians in opti-
mal patient care [11].
The use of ML techniques for the creation of predictive

models of perioperative complications is in continuous
expansion.
The aim of our review is to clarify the role of ML in

perioperative settings, evaluating currently available pre-
dictive outcome models, the types of ML algorithms
used more frequently, and their proved efficacy.

Methods
Literature search
This systematic review was conducted according to Pre-
ferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines (http://prisma-
statement.org/documents/PRISMA_2020_checklist.pdf).
The authors performed a systematic literature search

of Scopus, CINAHL, the Cochrane Library, PubMed,
MeSH, MEDLINE, and Embase, from 1 January 2015 to
30 March 2021, using different combinations of the fol-
lowing terms: “risk prediction,” “surgery,” “machine
learning,” “ICU,” “anesthesia,” and “perioperative.”
Specifically, ((((((("risk prediction"[All Fields]) AND

("surgery"[All Fields])) AND ("machine learning"[All
Fields])) OR (risk prediction)) ) AND (machine learn-
ing)) AND (ICU)) OR (risk prediction)) AND (machine
learning)) AND (anesthesia); ((((((((("risk prediction"[All
Fields]) AND ("surgery"[All Fields])) AND ("machine
learning"[All Fields])) OR (risk prediction)) ) AND (ma-
chine learning)) AND (ICU)) OR (risk prediction)) AND
(machine learning)) AND (anesthesia) OR (((((((("ris-
k"[All Fields]) AND ("surgery"[All Fields])) AND ("ma-
chine learning"[All Fields])) OR (risk)) ) AND (machine
learning)) AND (ICU)) OR (risk)) AND (machine learn-
ing)) AND (anesthesia); ((postoperative) AND machine
learning) AND (intensive care admission).
In the last 10 years, there was an exponential increase

in literature concerning the application of AI in medi-
cine. Therefore, we decided to perform the search in this
time frame to include more homogeneous and easily
comparable studies. We included studies if they evalu-
ated ML models in surgical settings for the prediction of
perioperative risk. Both prospective and retrospective
studies were eligible for inclusion. The following types of
study were excluded: papers published prior to 2015, pa-
pers concerning outpatient settings, animal studies,
pediatric population, and studies written in languages
other than English. Furthermore, primary study evaluat-
ing strictly surgical outcomes, and systematic reviews
were considered uneligible.

Data extraction and quality assessment
The primary aim of our study was to assess the main
perioperative outcomes in which ML methods are used,
and their efficacy among different algorithms.
Two reviewers independently screened the selected ar-

ticles, and a third reviewer resolved any discrepancies.
To assess the reporting quality of all included studies,

we used the Transparent Reporting of a multivariable
prediction model for Individual Prognosis or Diagnosis
(TRIPOD) checklist [12]. In fact, it provides guidance for
extracting relevant information and calculating summary
scores to determine adherence of primary prediction
model to the TRIPOD.
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Two independent reviewers assessed for each se-
lected study the compliance with the items described
in the checklist. Moreover, to facilitate data extrac-
tion and scoring, the studies were analyzed accord-
ing to the study design, predictor selection, outcome
assessment, applied model, and its validation. The
checklist includes 22 main items, of which ten are
divided in sub items, all with four potential answer
options: “yes,” “not,” “referenced,” “not applicable.”
After adequately fulfilling each item of the checklist,
the adherence to the TRIPOD is automatically calcu-
lated. We established different levels of adherence to
TRIPOD, setting a scale from 0 to 100%, assuming
that a research was more accurate with higher ad-
herence to tripod checklist.

Results
One hundred forty-seven papers were identified through
database searching. After the removal of the duplicates, 89
articles were screened, and 43 were found to be ineligible
after reading the abstracts. Out of the 46 full text reviewed
articles, 10 were excluded because of inadequate clinical
setting or because concerning pediatric population. Fi-
nally, 36 articles were included for the review (Fig. 1).
Outlines all characteristics of the final selected articles

(Table 1) [13–48], including the design, cohort, and ob-
jective of each study, as well as the ML methods used
and the best performance.
Our analyses pointed out that more than 95% of in-

cluded studies were published after 2018, and almost en-
tirely performed in USA and Asia (Fig. 2).

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA flow chart) illustrating the process of selecting eligible
publications for inclusion in the systematic review
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Table 1 Overview of papers included in our analysis

Author,
years

Study design Objective Final
cohort

Outcomes Type of ML Prediction
performance

Comparator/control

Lundberg
SM, 2019

Retrospective/
observational
single center

Development and testing
of a ML-based system
that predicts the risk of
hypoxemia during gen-
eral anesthesia

48,069 Hypoxemia GB AUC 0.92 ML-based system was
compared to
anesthesiologists’
predictions

Kendale S,
2018 [13]

Retrospective/
observational
single center

Prediction of the risk of
post-induction
hypotension using ML
methods

13,323 Cardiovascular
complications

RF, SVM, GB, BN,
LR-EN,
regularization, K
nearest; linear dis-
crimination ana-
lysis; neural nets

AUC GB 0.74
(95% CI, 0.72 to
0.77). RF 0.74
(95% CI, 0.73 to
0.75)

Different ML algorithms
were trained to obtain
the model with the best
performance

Fernandes
MPB, 2021
[14]

Retrospective/
observational
single center

ML models used to
predict postoperative
mortality rarely include
intraoperative factors.

5015 Mortality logistic
regression, RF
neural networks,
SVM and extreme
gradient boosting
(XGB).

XGB predicted
mortality
confidence
interval (CI): 0.88
(0.83–0.94)

Different ML algorithms
were trained to obtain
the model with the best
performance

Cherifa M,
2020 [15]

Retrospective/
observational
single center

Prediction of acute
hypotensive episode

1151 Cardiovascular
complications

Super Learner
(SL) algorithm

SL AUROC 0.890 Different ML algorithms
were trained to obtain
the model with the best
performance

Flechet M,
2019 [16]

Prospective/
observational
single center

Compare diagnostic
performances of ML
models and physicians in
predicting AKI-23 in the 7
days following ICU
admission

252 Acute kidney
injury

ML based AKI
predictor

AUROC 0.80 Physicians’ predictions
were compared against
the AKI predictor model

Kang AR,
2020 [17]

Retrospective/
observational
single center

Prediction of hypotension
during anesthesia
induction

222 Cardiovascular
complications

Naïve Bayes,
logistic
regression, RF,
ANN

RF best
performance
AUC 0.842

Different ML algorithms
were trained to obtain
the model with the best
performance

Meiring C,
2018 [18]

Retrospective/
observational
multicentric

Identification of risk
factors for admission in
ER/ICU for spine patients

11150 ER/ ICU
admission

RF, SVM, GB,
DECISION TREE,
DEEP LEARNING,
NNC, Single layer
averaged neural
network

RF AUC 0.859,
NNC AUC0.864;
SVM AUC 0.867;
adaboost AUC
0.868; deep
learning AUC
0.883

Logistic regression against
physiological data alone
outperformed APACHE-II
(current risk stratification
tools)

Nudel J,
2021 [17]

Retrospective/
observational
multicentric

Comparison of two ML
strategies with
conventional statistical
models in prediction of
surgical complication

43,6807 Surgical
complications,
VTE

GB, ANN ANN, and XGB,
LR achieved
similar AUCs
0.65, 0.67 and
0.64

Different ML algorithms
were trained to obtain
the model with the best
performance

Lee Hc,
2018 [19]

Retrospective/
observational
single center

Comparison of ML
method with logistic
regression analysis to
predict AKI after cardiac
surgery

2010 AKI, mortality RF, SVM, GB,
DECISION TREE,
DEEP LEARNING,
NNC

Best GB AUC
0.78

The performance of ML
approaches was
compared with that of LR
analysis

Bai P, 2020
[20]

Retrospective/
observational
multicentric

Identification of risk
factors of early cerebral
infarction and myocardial
infarction after CEA with
ML method

443 Cardiovascular
complications

linear SVM,
decision
tree,RF,ANN,
quadratic
discriminant
analysis, and
XGBoost

XGBoost had
the highest
accuracy

Not applicable

Tan HS,
2021 [2021]

Retrospective
study
single center

Use of ML to identify
predictive factors for
inadequate labor
anesthesia

20,716 Pain
prevention

RF, XGBoost and
logistic regression
models

All three models
performed
similarly, with
AUC 0.763–
0.772

The performance of ML
was compared with
regression techniques

Solomon Retrospective Prediction of 62,182 Cardiovascular Gradient AUC of 0.81– The performance of ML
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Table 1 Overview of papers included in our analysis (Continued)

Author,
years

Study design Objective Final
cohort

Outcomes Type of ML Prediction
performance

Comparator/control

SC, 2020
[21]

and
prognostic
single center

intraoperative bradicardia complications Boosting
Machine (GBM)

0,89 was compared with
regression techniques

Ko S, 2020
[22]

Retrospective
and
multicentric

Prediction of
postoperative AKI after
total knee arthroplasty.

5757 AKI Gradient
Boosting
Machine (GBM)

AUC of 0,78 Not applicable

Lu Y, 2020
[23]

Retrospective
single center

Develop ML algorithm for
identification of patients
requiring admission
following elective anterior
cruciate ligament (ACL)
reconstruction.

4709 Length of stay RF, XGBoost, LDA,
AdaBoost

The ensemble
model achieved
the best AUC
0.76

Not applicable

Maheshwari
K, 2020 [24]

Observational
single center

Using ML to predict
intraoperative
hypotension

305 Cardiovascular
complications

Hypotension
Prediction Index

95% confidence
interval

Not applicable

Hill BL, 2019
[25]

Retrospective/
observational
single center

Develop a model that
estimates in-hospital mor-
tality at the end of sur-
gery to quantify the
change in risk during the
perioperative period.

53,097 Mortality Logistic
regression, Elastic
Net24 logistic
regression, RF,
GB.

Best RF 0.932 Comparison of ML
methods with the
perioperative score (as
ASA physical status score)

Suhre
W,2020 [26]

Retrospective
multicentric

Correlation between
chronic cannabis use and
the risk of postoperative
nausea and vomiting
(PONV).

16,245 PONV Bayesian additive
regression
trees (BART)

90% CI 0.98–
1.33

Not applicable

Lee HC,
2018 [27]

Retrospective/
observational
single center

Comparison of ML
method with logistic
regression analysis to
predict AKI after liver
transplantation

1211 AKI, mortality RF, SVM, GB,
Decision tree,
Neural network
Classifier, BN, LR-
EN, multilayer
perceptron

Best GB AUC
0.90

The performance of ML
approaches was
compared with that of LR
analysis

Barry GS,
2021 [28]

Retrospective
cohort study

Investigate the incidence
and factors associated
with rebound pain in
patients who received a
PNB for ambulatory
surgery.

482 Pain control Logistic model
tree attribute-
selected classifier

ROC curve of
0.609

Not applicable

Gabriel RA,
2019 [29]

Retrospective/
observational
single center

Develop a predictive
model for determining
LOS.

1018 LOS Ridge regression,
Lasso, RF

ridge regression
0.761, Lasso
0.752, RF 0.731

Predictive models using
ML techniques were
compared to model
performances

Li H, 2020
[30]

Retrospective/
observational
single center

Development of a
predictive model for LOS
after total knee
arthroplasty

1826 LOS GB AUC 0.738. Logistic regression and
ML model were
compared

Jungquist
CR, 2019
[31]

Retrospective/
observational
single center

Early detection of
respiratory depression
using ML models

60 Postoperative
respiratory
complications

SVM Accuracy of
80%

Not applicable

Nguyen M,
2020 [32]

Multicentric
randomized

Using ML techniques and
causal inference methods
to detect the dynamic
relationship between
transfusion ratios and
outcomes in trauma
patients

680 Mortality and
hemorrhagic
complications

Statistical
programming
language R

Mortality at AUC
0.89,
hemorrhagic
complications
1.07

ML techniques were used
to augment the intent-to-
treat analysis of PROPPR

Tourani
R,2019 [33]

Retrospective
multicentric

In the context of
perioperative decision
support, understand if the
use of intraoperative data
improve the performance

38,045
+ 9,044

Sepsis, septic
shock, UTI,
PNA, surgical
infections

Logistic
regression
models.

AUC between
0.66 and 0.82

Not applicable
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Table 1 Overview of papers included in our analysis (Continued)

Author,
years

Study design Objective Final
cohort

Outcomes Type of ML Prediction
performance

Comparator/control

of 30-day postoperative
risk models

Cartailler
J,2019 [34]

Clinical trial
single center

Use of EEG-patterns to
anticipate excessive deep
sedation

80 Neurological
complications

RF AUC of 0.93 Not applicable

Wong WEJ,
2021 [35]

Retrospective/
observational
single center

Prediction of AKi in ICU 940 ICU AKI,
hospital and 1
year mortality

Chi-square test,
Fisher’s exact
test,Mann-
Whitney test,
independent t
test and the
Kaplan-Meier
curve.

AUROCs of the
auxiliary models
for ICU AKI were
0.7537, 0.7589,
0.7950, 0.7333
and 0.7654.

Not applicable

Lee CK,
2021 [36]

Retrospective/
observational
single center

Prediction of mortality in
post-operative patients

59,985 Post-operative
mortality

Generalized
additive models
with neural
networks (GAM-
NNs).

AUC 0.921 Model performance was
compared to a standard
LR model

Jeong YS,
2021 [37]

Retrospective/
observational
single center

To make a proper model
for predicting
postoperative major
cardiac event (MACE) in
ESRD patients undergoing
general anesthesia.

3220 Cardiovascular
complications,
mortality

SVM, decision
tree, RF, Gaussian
naive Bayes
(GNB), ANN, LR,
XGBoost

RF AUC 0.797 Different ML algorithms
were trained to obtain
the model with the best
performance

Filiberto AC,
2021 [38]

Retrospective/
observational
single center

Postoperative acute
kidney injury using ML
models

1531 AKI RF AUC 0.70 ML models using the
perioperative data were
compared to models
using either preoperative
data alone or the ASA
physical status
classification

Meyer A,
2018 [39]

Retrospective/
observational
single center

Use machine
learning methods to
predict severe
complications during and
after cardiothoracic
surgery.

11,492 Postoperative
bleeding, AKI,
mortality

Deep learning
model

AUC 0·09 for
bleeding, of
0·18 for
mortality, and of
0·25 for AKI

Deep learning methods
were compare to
established standard-of-
care clinical reference
tools

Chiew CJ,
2020 [40]

Retrospective/
observational
single center

Compare the
performance of ML
models against
the traditionally (CARES)
model and (ASA-PS) in
the prediction of 30-day
postsurgical mortality and
ICU admission

90,785 Mortality,
postoperative
ICU admission

RF, GB, adaptive
boosting, SVM

Best GB AUC
0.23 and for
mortality and
0.38 ICU
admission

The performance of ML
models was compare
against the traditionally
Combined Assessment of
Risk and Encountered in
Surgery (CARES) model
and the ASA physical
status.

Bihorac A,
2019 [41]

Retrospective/
observational
single center

To calculate the risk for
postoperative
complications and death
after
surgery using ML

51,457 AKI, sepsis, VTE,
ICU admission
> 48 h,
mechanical
ventilation >
48 h, wound,
neurologic and
cardiovascular
complications

MySurgeryRisk
algorithm

AUC values
ranging
between 0.82
and 0.94

Not applicable

Yao RQ,
2020 [42]

Retrospective/
observational
single center

Develop a mathematical
model for predicting the
in-hospital mortality
among patients
with postoperative sepsis.

3713 Postoperative
sepsi, mortality

Extreme gradient
boosting
(XGBoost) and
stepwise logistic
regression

Best XGBoost
AUC 0.835

ML model was compare
to the stepwise LR model.

Datta S,
2020 [43]

Retrospective/
observational
single center

Describe a model that
predicts postoperative
complications considering

43,943 ICU
LOS,prolonged
mechanical

RF AUC 0.21 ML models using
preoperative and
intraoperative data were
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Table 1 Overview of papers included in our analysis (Continued)

Author,
years

Study design Objective Final
cohort

Outcomes Type of ML Prediction
performance

Comparator/control

intraoperative events. ventilation,
neurologic
complications
cardiovascular
complications,
AKI, VTE,
wound
complications,
mortality

compare to models using
preoperative data alone

Brennan M,
2019 [44]

Prospective,
non-
randomized
pilot study

Assess the usability and
accuracy of the
MySurgeryRisk algorithm
for preoperative risk
assessment

20 AKI, sepsis, VTE,
ICU admission
> 48 h,
mechanical
ventilation >
48 h, wound,
neurologic and
cardiovascular
complications

MySurgeryRisk
algorithm

MySurgeryRisk
algorithm
ranged
between 0.73
and 0.85

Compare the accuracy of
perioperative risk-
assessment between phy-
sicians and MySurgeryRisk.

Houthooft
R,2015 [45]

Retrospective/
observational
single center

develop model to
determine patient survival
and ICU length of stay
(LOS)
based on monitored ICU
patient data.

14,480 LOS ANN, k-nearest
neighbors (k-NN),
SVMs, classifica-
tion trees (CART),
RF,
adaptive
boosting
(AdaBoost)

SVM AUC 0.77 Different ML algorithms
were trained to obtain
the model with the best
performance

AdaBoost = adaptive boosting algorithms, AKI = acute kidney injury; ANN = artificial neural network models, BART = Bayesian additive regression trees, BN =
Bayesian network, GB = gradient boosting, ICU = intensive care unit, LDA = linear discriminant classifier, LOS = length of stay, LR-EN = logistic regression with
elastic net, ML = machine learning, NNC = neural network classifier, PNA = pneumonia, PONV = postoperative nausea and vomiting, RF = Random Forest, SVM =
support vector machine, UTI = urinary tract infection, VTE = venous thromboembolism, XGBoost = extreme gradient boosting, ASA = American Society
of Anesthesiologist

Fig. 2 Geographical distribution of articles publications. The USA is the main country where publications came from, followed by China
and Korea
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The quality of the studies selected for the review was
acceptable, with 75% of studied showing an adherence
rate to TRIPOD more than 60% (Fig. 3). Specifically, in
the first section of the checklist (Title and Abstract), a
mean of 42% of studies adhere to tripod item. Concern-
ing the methods section, all the articles defined the study
design, or the source of data, while 53% of papers de-
scribed the handling of missing data. In the results sec-
tion, measures applied and models used were not always
appropriated in the included studies, specifically 8% of
papers presented the full prediction model and explained
how to use it, while 19% of studies reported performance
measures for the prediction model (Rev #2, comm #3).

Nearly all manuscripts discussed about the limitations
of the study and gave an overall interpretation of results.
The use of these new technologies to analyze peri-

operative complications has been tested in almost all
types of surgery (general, cardiac, orthopedic, neurosur-
gical, vascular). Variables and predictors were properly
listed and described in all the articles. ML methods were
used mainly to predict the following outcomes: mortality
(n = 12), cardiovascular complications (n = 11), acute
kidney injury (AKI; n = 9), surgical complications (n =
7), intensive care unit admission (ICU; n = 6), respira-
tory complications (n = 6), length of stay (n = 5), venous
thromboembolism (VTE; n = 4), neurological

Fig. 3 Frequency of adherence to TRIPOD checklist

Fig. 4 Main outcomes (preoperative/intraoperative) considered in our analysis
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complications (n = 4), sepsis (n =3), pain (n = 2), and
post-operative nausea and vomiting (PONV; n = 1) (Fig.
4).
As stated before, most of studies considered preopera-

tive variables, like demographic, medical history, clinical
and laboratory values evaluation, to calculate periopera-
tive risk. Conversely, several studies evaluated intraoper-
ative variables, as electroencephalography (EEG) pattern
[34], or intraoperative vital signs [13, 15, 22, 24, 46, 47],
for a real-time prediction of overly deep sedation, post-
induction and intraoperative hypotension, hypoxemia,
and intraoperative bradycardia.
Supervised models were used in most of cases (Fig. 5).

The most frequently used algorithms were gradient
boosting (n = 13), random forest (n = 10), logistic re-
gression (LR; n = 7), artificial neural networks (ANNs; n
= 6), and support vector machines (SVM; n = 6). Deep
learning, decision trees, and Naïve Bayes were other
models commonly applied in the included manuscripts.
In the totality of reviewed papers, ML algorithms

proved to be effective in outcome prediction. Half of the
selected studies compared different types of ML to iden-
tify the best performing method. Gradient boosting and
random forest were found to be the models with the
highest accuracy, achieving an area under the curve
(AUC) greater than 0.90 in most of cases. Moreover, a
few studies compared automatically obtained algorithms
to conventional scores, revealing the outperformance of
ML models [25].

Discussion
The number of manuscripts regarding ML implementa-
tion in health care settings is steadily increasing over the
last few years, as clearly suggested by a recently

published review on AI utility to provide decision sup-
port to clinicians in ICU setting [49, 50].
In fact, the availability of electronic health records,

and the diffusion of Big Data systems have enabled new
possibilities in data collection and storage. The interpret-
ation of this amount of data with traditional methods
could not only be extremely complicated, but even re-
ductive. In this regard, the advent of AI-based technolo-
gies has opened up new perspectives, providing a
different form of research [51].
Anesthesia and assessment of perioperative risk appear

to be excellent fields to develop and apply ML systems,
as reported in literature [52, 53], and confirmed by our
research. The identification of modifiable risk factors
and the subsequent optimization of the preoperative
phase appear to be a crucial factor to decrease the inci-
dence of post-operative complications [54]. Furthermore,
risk stratification allows the acquisition of an adequate
informed consent and an accurate anesthesiologic plan-
ning, tailored to each patient. ML systems are well suit-
able for this context, where the possibility to collect a
large number of data and the choice of the variable that
is selected by the model itself, allows the discovery of
new factors and a different interpretation of already
known items. Thus, the availability of interpretations
and predictions in real time could allow to enter a new
era of anesthesia.
From a practical point of view, the method starts with

multi-source data extrapolated and collected; subse-
quently, they are placed in ML systems able to return in-
terpretative and predictive models, providing suitable
tools for daily technologies with validated scores. Among
conventional scores, the one used more frequently for
comparison is the ASA-PS Classification System that has

Fig. 5 Presentation of the main types of machine learning methods used in the analysis of our studies
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been in use for over 60 years. Comparing existing scores
with new models is an essential step to understand
whether this investment of time and resources could fi-
nally improve the perioperative risk stratification.
Moreover, in addition to the risk of post-operative

complications, ML would also be able to answer more
complex questions and create models capable of provid-
ing early predictions of adverse events, thus enabling a
perioperative optimization.
The results that emerge from this systematic analysis

are promising. In studies that compared ML models
with traditional scores, most confirmed their outper-
formance. In particular, the use of AI-based technologies
provided excellent results regarding events of great
interest in the field of Anesthesia, as post-induction
hypotension and post-intubation hypoxia [13], or the
risk of AKI or delirium after surgery [19, 27, 55].
Finally, it is interesting to underline that not only clin-

ical outcomes are relevant, but also administrative ones,
as length of hospital stay, or need for recovery in inten-
sive care settings, that may have a great relapse into hos-
pital logistics and in economic strategies (Fig. 6). A
systematic use of AI might allow the achievement of

innovative results in other fields as well, such as scien-
tific research and health organization, especially when
associated with other data management technologies
such as Big Data and Blockchain.
Among several ML algorithms currently applied, Gra-

dient boosting and random forest were found to be the
models with the best performance and the highest ac-
curacy, achieving an area under the curve (AUC) greater
than 0.90 (Ref #2, comm #3). Still, it is not possible to
make a uniform evaluation and draw conclusions about
the best algorithm for predictive models of perioperative
complications, because of the heterogeneity of settings
and the difference in the algorithms evaluated. The lack
of uniformity of the included studies prevented us from
performing a meta-analysis using univariate and multi-
variate random effect models (Ref #2, comm #3). More-
over, the models in most of the studies lack an external
validation.
Further, even if we practically use AUC as an evalu-

ation criterion, we acknowledge its limits in the setting
of AI, especially in case of unbalanced dataset. Note that
other criteria can also be used to evaluate ML models,
such as model relevance, efficiency, and interpretability

Fig. 6 Importance of acquisition of data quality for application of AI in different fields such as research, clinical practice, and health
system organization
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[56]. However, to achieve high-quality and high-quantity
data sets, it is of paramount importance the screening of
each step of the process, from data collection to ML
model selection and its algorithm
(Rev #2, comm #3, comm #4).
Despite their growing diffusion, the use of these tech-

nologies in perioperative medicine is raising limitations
and challenges. Along with technological progress, data
quality will inevitably become increasingly important. A
viable choice could be blockchain technology, to ensure
adequate quality and enable secure data sharing. Its im-
plementation could allow the safe management of large
files and consequently the approval of algorithms that
are progressively developed [57].
Furthermore, as recently reported for ICU-setting [50],

despite the potential role of AI to improve clinical out-
comes, the vast majority of developed models remain
within the testing and prototyping environment. A uni-
form and structured approach could enable the imple-
mentation and safe delivery of AI technologies in ICU
and overall, in health care settings.
Finally, the creation of predictive scores should guar-

antee precise rules. Unfortunately, these technologies are
so innovative that the evaluation of their performance is
not always so linear. Therefore, a new version of the
TRIPOD statement specific for AI/ML systems (TRI-
POD-ML) is currently under development. It will focus
on the introduction of ML prediction algorithms to es-
tablish methodological and reporting standards for ML
studies in health care [58].
Technologies are becoming more and more present in

health-care settings. Both clinical and organizational
decision-making processes can take advantage of these
technologies. Nevertheless, high-quality studies are
needed to demonstrate the real impact of ML in this
context.
Our research group is starting a study that aims to val-

idate a safe discharge score from the PACU (post-
anesthesia care unit) using AI techniques; the score will
no longer be generic, but based on the local clinical real-
ity and on the specific population. Similarly, we are
working on the application of AI algorithms in OR (op-
erating room) management settings, developing a pro-
spective trial “Bloc-op” (NCT 05106621), in
collaboration with the engineering department, to
optimize OR organization and resources allocation. We
believe that multidisciplinary collaboration is essential to
integrate AI technologies into routine clinical practice,
thus leading to a great improvement in the quality of
care.
We proposed that AI should become an essential tech-

nical and non-technical skill for the future anesthesiolo-
gists. In order to achieve this goal, a primary focus
should be the education and training of physicians and

researchers, who need to be adequately prepared on the
uses and limitations of AI based technologies (Rev #2,
comm #4).

Conclusions
This systematic review shows the potential role of ML in
perioperative medicine, and particularly in the creation
of models for the prediction of perioperative risk. Our
results are encouraging.
Undoubtedly, the exploitation of a large amount of

data is possible solely thanks to the application of AI.
ML algorithms offer increasingly precise solutions in
terms of optimization of the perioperative risk. A per-
sonalized risk/benefit analysis can result in an accurate
prediction in terms of length of hospital stay and ICU
recovery, thus positively influencing patient management
and health costs.
Further research is needed to develop a framework

standardizing AI evaluation measures, and this will be
possible with interdisciplinary approaches, allowing to
constantly improve high-quality care.
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