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Abstract 

Background  Preliminary studies suggest that moderate ARDS and acute renal failure might benefit from extracor-
poreal CO2 removal (ECCO2R) coupled with CRRT. However, evidence is limited and potential for this coupled treat-
ment may need to be explored. The aim of the present study was to evaluate whether a protective driving pressure 
was obtained applying low-flow ECCO2-R plus CRRT in patients affected by moderate ARDS with COVID-19 compared 
to an historical group without COVID-19.

Methods  A case-control study has been conducted comparing a group of consecutive moderate ARDS patients 
presenting AKI and affected by COVID-19, who needed low-flow ECCO2-R plus CRRT to achieve an ultra-protective 
ventilatory strategy, with historical group without COVID-19 that matched for clinical presentation and underwent 
the same ultra-protective treatment. VT was set at 6 mL/kg predicted body weight then ECCO2R was assessed to facili-
tate ultra-protective low VT ventilation to preserve safe Pplat and low driving pressure.

Results  ECCO2R+CRRT reduced the driving pressure from 17 (14-18) to 11.5 (10-15) cmH2O (p<0.0004) in the four-
teen ARDS patients by decreasing VT from 6.7 ml/kg PBW (6.1-6.9) to 5.1 (4.2-5.6) after 1 hour (p <0.0001). In the ARDS 
patients with COVID-19, the driving pressure reduction was more effective from baseline 18 (14-24) cmH2O to 11 
(10-15) cmH2O (p<0.004), compared to the control group from 15 (13-17) to 12(10-16) cmH2O (p< 0.03), after one 
hour. ECCO2R+CRRT did not affected 28 days mortality in the two groups, while we observed a shorter duration 
of mechanical ventilation (19 {7-29} vs 24 {22-38} days; p=0.24) and ICU length of stay (19 {7-29} vs 24 {22-78} days; 
p=0.25) in moderate ARDS patients with COVID-19 compared to control group.

Conclusions  In moderate ARDS patients with or without COVID-19 disease, ECCO2R+CRRT may be and effective 
supportive treatment to reach protective values of driving pressure unless severe oxygenation defects arise requiring 
ECMO therapy initiation.
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Background
Mechanical ventilation (MV) is the main form of life 
support for patients with acute respiratory failure and 
can resolve the impairment of gas exchange alteration 
in the vast majority of patients [1]. Tidal volume (VT) 
limitation to 6 ml/kg predicted body weight (PBW) 
and Plateau pressure (Pplat) control to a limit of 30 cm 
H2O represent the standard of care for MV in ARDS 
patients [2].

As tidal hyperinflation may occur in some patients 
despite limiting VT and Pplat, they may benefit from VT 
reduction even if ventilated less than 30 cm H2O of 
Pplat [3].

Improving technology for acute respiratory failure 
treatment might involve the low-flow ECCO2R sys-
tem, that facilitates a lower volume (4ml/Kg of PBW) 
and lower pressure (Pplat < 30 cmH2O) aiming at reach-
ing an “ultra-protective” MV strategy in patients with 
moderate-mild ARDS [4]. Critically ill patients under-
going MV often suffer of acute kidney injury (AKI) and 
frequently (between 35% to 60% of cases) require Con-
tinuous Renal Replacement Therapies (CRRT) because 
of multiorgan failure [5, 6].

Over the past twenty years a large number of experi-
mental attempts have tried to couple ECCO2R with 
CRRT systems into specific lung-renal support, allow-
ing “ultra-protective” settings in ARDS patients 
affected by AKI [7]. In a recent trial, the use of CRRT 
plus ECCO2R allowed ultra-protective MV resulting in 
better recovery of renal function, lower concentration 
of inflammatory mediators and lower plasma pro-apop-
totic activity [7].

Even if less explored, the relative contribution of 
ECCO2R on total CO2 clearance and renal support on 
the natural lung became of specific interest during the 
last pandemic emergency characterized by the great 
prevalence of severe acute respiratory distress.

In this scenario, which rapidly became a global health 
emergency, lung damage was not the only presentation 
of the complex syndrome.

Currently, it is well known that SARS-CoV-2 infec-
tion might also involve other organs/systems present-
ing with extra-respiratory manifestations, including 
renal, cardiac, gastrointestinal, hepatic, neurological, 
olfactory, gustatory, ocular, cutaneous and hematologi-
cal symptoms.

The need to treat multiple organ failure during the 
emergency period induced clinician to extend the con-
cepts on extracorporeal CO2 removal, introduced in 

1977 to control arterial CO2 tension and reduce ventila-
tion thus allowing lung rest, directly translating these 
strategies to pathological conditions caused by SARS-
CoV-2 infection.

Several extra-respiratory manifestations, such as acute 
kidney injury, coagulation disorders and thrombotic 
complications, represented a challenge while supporting 
lung and kidney.

The aim of the present study was to evaluate whether 
a protective driving pressure was obtained applying low-
flow ECCO2-R plus CRRT in patients affected by mod-
erate ARDS with COVID-19 compared to an historical 
group of patients not affected by COVID-19.

Methods
Study design and setting
A case-control study was conducted at the Intensive 
Care Unit of the University Hospital of Sassari, Italy. 
All consecutive patients affected by moderate ARDS 
with COVID-19 and AKI with CRRT who needed an 
ultraprotective ventilatory strategy were evaluated and 
underwent a low-flow CO2-removal plus CRRT treat-
ment. Instead, an historical group of patients affected by 
moderate ARDS without COVID-19, who had been given 
ultraprotective treatment with ECCO2R was retrospec-
tively collected as control.

The study was approved by our Institution’s Ethics’ 
Committee (ASL 1 Sassari -Prot. 2440/CE); all methods 
were performed in accordance with the relevant guide-
lines and regulations and informed consent to participate 
was obtained according to Italian regulations.

Participants sampling and inclusion
The ultraprotective strategy was applied to patients 
affected by moderate ARDS who developed a respira-
tory acidosis that could not be managed with the sole 
low VT because respiratory mechanic was not protec-
tive for driving pressure and Pplat and underwent already 
CRRT because of AKI. The ultraprotective strategy was 
achieved by applying a membrane lung to a renal replace-
ment circuit in patients who were already on CRRT 
treatment.

Inclusion criteria were: need for CRRT and MV with 
concomitant hypercapnic respiratory acidosis in mod-
erate ARDS (PaO2/FiO2 100–200 mmHg, with positive 
end-expiratory pressure (PEEP) ≥ 5 cmH2O) accord-
ing to the Berlin definition, patients expected to receive 
invasive MV for > 24 hours and age > 18 years old. Exclu-
sion criteria were chronic obstructive pulmonary disease, 
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pregnancy, intracranial abnormality, heart insufficiency 
or acute coronary syndrome and contraindication for 
systemic anticoagulation.

The primary endpoint was to evaluate whether 
patients affected by moderate ARDS and COVID-19 
could achieve a driving pressure ≤ 14 cmH2O applying 
ultraprotective strategy with ECCO2R compared to con-
trol group.

The secondary endpoints were: a) days on mechani-
cal ventilation; b) ICU length of stay and c) mortality at  
28 days.

Variables and data measurements
Severity of comorbidities in all patients were categorized 
through Charlson Index. To assess organ failure and 
to predict mortality, SOFA score plus Simplified Acute 
Physiological Score (SAPS II) and Acute Physiologic 
Assessment and Chronic Health Evaluation II (APACHE 
score II) were assessed.

Patients enrolled were sedated, paralyzed, and venti-
lated. Neuromuscular blockade was administered for a 
minimum of 24 hours. VT was set at 6 mL/kg PBW and 
PEEP was adjusted to obtain a Pplat between 28 and 30 
cmH2O.

ECCO2R was assessed to facilitate ultra-protected low 
VT ventilation in order to preserve safe Pplat values and 
low Driving Pressure [3, 4, 8].

VT was progressively reduced towards the value of 4 
mL/kg PBW and PEEP titrated to a target Pplat of 23–25 
cmH2O. Sweep gas and blood flow were set to maintain 
a pH >7.28. If PaCO2 exceeded 75 mmHg and/or despite 
optimal ECCO2R settings and a respiratory rate (RR) of 
30-35 breaths/min, VT was increased to the last previ-
ously tolerated value. In case CO2 and pH control were 
achieved with the goal of ultra-protected low VT ventila-
tion, RR was progressively reduced.

The potential for weaning off ultra-protective low VT 
ventilation was assessed after 72 hours of ECCO2R treat-
ment by setting MV according to the conventional ARD-
SNet strategy (increasing VT to 6 ml/kg PBW with RR = 
20–30 breaths/min and applying PEEP-FIO2 combination 
setting, then switching off the sweep-gas flow through 
the ECCO2R device). If Pplat remained at less than 28 cm 
H2O, ECCO2R was stopped and conventional ARDSNet 
ventilatory strategy reestablished. CRRT was continued 
or suspended depending on the recovery of renal func-
tion regardless of respiratory management [4].

Respiratory mechanics, hemodynamic parameters, 
arterial blood-gas values, heparin dose, and activated 
partial thromboplastin time ratio (APTTratio) were col-
lected during extracorporeal support at baseline and 
run-in-time after 24, 48 and 72 hours. Blood-chemistry 
determinations were obtained daily. Respiratory-system 

mechanics data were calculated according to stand-
ard formulas. Hemodynamic parameters and tempera-
ture were monitored continuously; diuresis and arterial 
blood gases were measured during the whole stay at the 
intensive care unit (ICU). Norepinephrine infusion was 
applied to fluid administration to reach a target mean 
arterial pressure of 65 mmHg.

For extracorporeal treatment, a 13-Fr hemodialysis 
venous catheter (GamcathTM®; Gambro-Baxter), under 
ultrasonography guidance, was percutaneously inserted 
into the femoral vein.

ECCO2R was provided by a low-flow CO2-removal 
device with concomitant CRRT in CVVHDF setting, 
with a polymethylpentene hollow fiber gas-exchanger 
membrane (Prisma Lung+® or OMNI® platform). CRRT 
was performed through dialysis membranes ST150® 
Gambro-Baxter or OMNI filter® dialysis-Bbraun. The 
venous blood was actively convoyed via roller pump 
with an up to 450 ml/min individual-adapted flow to 
the exchanger membrane. CO2 removal was reached by 
diffusion with 10 L/m O2 gas flow. During treatment, a 
cleaning of oxygenator fibers was performed by increas-
ing for a few seconds O2 gas flow. Anticoagulation was 
performed through systemic heparin infusion targeting 
an aPTTratio range of 1.8-2.2 [4].

Sample size
In a favorable scenario with low driving pressure vari-
ability, a sample size of 14 produces a two-sided 95% 
confidence interval with a distance from the mean to the 
limits of 0.524 when the known standard deviation is 1; 
however, in the worst scenario described in the literature, 
a sample size of 14 produces a two-sided 95% confidence 
interval with a distance from the mean to the bounds of 
1.571 when the known standard deviation is 3 [9, 10].

Statistical analysis
Patients enrolled with clinical pneumonia due to SARS-
CoV-2 were submitted to analysis independently from 
patients with other causes of pneumonia (historical 
group of non-COVID ARDS patients).

Sample characteristics were summarized as median 
and 25th-75th percentiles (IQR) for quantitative variables, 
and by absolute and relative (percentage) frequencies for 
qualitative variables. The comparison between COVID-
19 patients was carried out using Fisher exact and Mann-
Whitney tests, as appropriate. Differences among study 
time-points were analyzed using Wilcoxon signed-rank 
test or non-parametric analysis of variance for repeated 
measures (Friedman test). In case of a significant Fried-
man test, for post hoc multiple testing, we adjusted the 
alpha level by using the Bonferroni correction (i.e., results 
were considered statistically significant at p <0.005). For 
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all other analyses, a p-value lower than 0.05 was consid-
ered statistically significant. STATA17 statistical software 
was used for statistical computation.

Results
Between April 2018 and November 2022, 14 adult 
patients with moderate ARDS (the group affected by 
COVID-19 disease and the control group of non-COVID 
ARDS patients from the prepandemic period) were 
admitted to ICU at the University Hospital in Sassari, 
Italy.

At baseline, the median (IQR) of PaO2/FiO2 ratio 
in COVID-positive and COVID-negative patients was 
107 (95-130) and 153 (102-202), respectively (p-value 
0.25); overall, a PaO2/FiO2 ratio of 121.5 (102-155) was 
observed. All patients were assisted in volume-controlled 
mode ventilation and received a propofol and opiate-
based on sedation and pain relief regime; they were 
evaluated as class III according to the Kidney Disease 
Improving Global Outcomes (KDIGO) and were already 
undergoing continuous veno-venous hemodialysis 

(CVVHD) when the CO2 hollow filter was applied, 
because of acute renal failure and oliguria.

Comparison of demographic data, respiratory vari-
ables, causes of lung injury, adjuvant therapy before 
ECCO2R and clinical characteristics stratified by 
COVID-19 patients are shown in Table 1.

Age, gender, Charlson Index, APACHE II, SAPS II and 
SOFA Score, underlying causes of lung injury and gen-
eral clinical characteristics did not differ between the 
two groups. Respiratory failure adjuvant therapy pre-
ECCO2R as recruiting maneuvers and prone positioning 
if applicable were performed [11, 12].

Overall clinical characteristics at different time-
points: ventilatory settings, pH, blood gases, respiratory 
mechanics, coagulation and hemodynamics are reported 
in Table 2.

All patients who underwent ECCO2R+CRRT treat-
ment presented significant reduction in VT from base-
line value of 6.7 ml/kg PBW (6.1-6.9) to 5.1 (4.2-5.6) 
after one hour, 5.0 (4.2-6.1) after 48 hours and 5.2 
(4.3-6.1) after 72 hours (p-value <0.0001); the change 

Table 1  Comparison of demographic and clinical characteristics stratified by COVID-19 patients

a Quantitative variables are summarized as median and (IQR)

BMI Body mass index, SAPS Simplified acute physiological score, SOFA Sequential organ failure assessment, APACHE II score (Acute Physiologic Assessment and Chronic 
Health Evaluation II), PaO2/FiO2 ratio of arterial-to-inspiratory oxygen fraction, GCS Glasgow coma score, Kidney Disease Improving Global Outcomes (KDIGO) class

Variablesa overall (n= 14) COVID-19 negative (n= 7) COVID-19 positive (n= 7) p-value

Age, years 65 (62-72) 62 (62-69) 72 (60-74) 0.55

Males, n (%) 9 (64.3) 4 (57.1) 5 (71.4) 1.00

BMI, kg/m2 28.4 (25.6-29.4) 27.5 (25.6-29.4) 29.3 (24.5-29.4) 0.83

APACHE II 14.5 (10-20) 19 (10-22) 10 (10-18) 0.19

SAPS II 37 (34-50) 45 (34-55) 36 (34-38) 0.33

Charlson Index 3 (2-6) 3 (2-4) 5 (2-6) 0.64

SOFA parameters at baseline
SOFA total score 8.5 (6-9) 9 (6-11) 8 (5-9) 0.24

GSC 14.5 (14-15) 14 (7-15) 15 (14-15) 0.48

PaO2/ FiO2 ratio 121.5 (102-155) 153 (102-202) 107 (95-130) 0.25

Mean arterial pressure, mm Hg 73.5 (68-80) 75 (65-80) 72 (70-75) 0.88

Creatine kinase, mg/dL 0.75 (0.70-1.60) 0.79 (0.67-4.2) 0.70 (0.70-1.60) 1.00

Platelet count, x 109 per L 216 (147-272) 180 (69-274) 223 (209-272) 0.25

Total bilirubin, mg/dL 0.77 (0.46-0.90) 0.80 (0.50-1.41) 0.47 (0.40-0.80) 0.13

Lung and Kidney
Compliance Rs, at baseline, cm H2O 26.5 (20-32) 27 (20-40) 25 (18-29) 0.40

Causes of lung injury

Pneumonia, n 12(%)
Sepsis, n 2(%)
Trauma, n 0(%)

12 (85.7)
2
0

6
1
0

6
1
0

KDIGO III, n (%) 14 (100.0) 7 (100.0) 7 (100.0) -

Adjuvant therapy before ECCO2R

Neuromuscular blockade
Prone positioning
Nitric oxide
Recruitment maneuvers

14 (100.0)
6 (42.9)
0
14 (100.0)

7 (100.0)
2 (28.6)
0
14 (100.0)

7 (100.0)
4 (57.1)
0
14 (100.0)
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in PaCO2 was from baseline 60.5 mmHg (56-77) to 49 
(44-58) after one hour and 54 (47-61) after 72 hours 
(p-value 0.03). Enhancement in lung protection was 
followed by decrease in driving pressure from baseline 
17 cm H2O (14-18) to 11.5 (10-15) after one hour and 
11.5 (11-14) after 72 hours (p-value 0.0001) and Pplat 
from baseline 30 cm H2O (27-35) to 25.5 (24-28) after 
1 hour and 27 (25-28) after 72 hours (p-value 0.001); all 
changes were not accompanied by significant effects on 
PaO2/FiO2 respiratory system compliance and hemo-
dynamic status.

VT reduction was coupled with PEEP increase avoiding 
conditions of derecruitment and alveolar opening-clos-
ing: from baseline values of 12.5 (10-15) cm H2O, PEEP 
was set to 14 (12-15) cm H2O after one hour and 14 (13-
16) after 72 hours (p-value 0.01).

Overall driving pressure, PaCO2, Pplat and VT patients’ 
values, at different time-points are also described in Fig-
ures from 1 to 4, respectively (Figs. 1, 2, 3 and 4).

Driving pressure and VT median values from base-
line to 72 hours in the two groups (COVID negative and  
positive) are reported in Figs.  5 and Fig.  6, respectively 
(Fig. 5, 6).

The decrease of driving pressure and VT in the COVID-
19 negative and positive patient groups from baseline 
to 72 hours was significant. Driving pressure decreased 
from 15 cm H2O (13-17) to 11 (10-17) after 72 hours 
(p-value 0.03) in the COVID-19 negative group and from 
18 (14-24) to 12 (11-13) after 72 hours (p-value 0.004) in 
the COVID-19 positive group; VT decreased in Covid-
19 negative patients from 6.7 ml/kg PBW (6.1-7.0) to 
4.7 (4.3-6.1) after 72 hours (p-value 0.003) and 6.5 (6.0-
6.7) to 5.2 (4.2-6.2) after 72 hours (p-value 0.0005) in the 
COVID-19 positive group; (Tables 3 and 4).

ECCO2‑R treatment
Blood-flow rates from 270 ml/min to 430 ml (mean 365 
ml/min at 24 hours) were achieved for all patients dur-
ing ECCO2R+CVVHD treatment. No patient-related 
complications were observed. Mechanical complica-
tions during extracorporeal procedure time (median 96 
{63-120} hours) were recorded as: two cases of mem-
brane lung/hemofilter clotting (only in the COVID-19 
affected group) and one case of pump malfunction. 
Mean heparin doses were: 11 IU/kg/h (10-13) and 
11 IU/kg/h (10-14) at the start and at the end of the 

Table 2  Clinical characteristics at different time-points (n=14)

a Quantitative variables are summarized as median and (IQR)

Post-hoc comparison:
1 Baseline VS. 1h p-value= 0.003
2 Baseline VS. 1h p-value= 0.0001; baseline VS. 24h p-value= 0.0001; baseline VS. 48h p-value= 0.0004. baseline VS. 72h p-value= 0.0005
3 Baseline VS. 1h p-value= 0.0004; baseline VS. 24h p-value= 0.001; baseline VS. 48h p-value= 0.003; baseline VS. 72h p-value= 0.0005
4 Baseline VS. 1h p-value= 0.0001; baseline VS. 24h p-value= 0.0001; baseline VS. 48h p-value= 0.0005; baseline VS. 72h p-value= 0.0005
5 Baseline VS. 1h p-value= 0.0009; baseline VS. 24h p-value= 0.003; baseline VS. 48h p-value= 0.004

PaCO2 Partial pressure of arterial CO2, PaO2 Partial pressure of arterial O2, Pplat Plateau pressure, VT Tidal volume, PEEP Positive end-expiratory pressure (extrinsic or 
total); Driving pressure: driving pressure = Pplat minus PEEP; PaO2/FiO2 ratio: arterial-to-inspiratory oxygen fraction; MAP Mean arterial pressure

Variablesa Baseline 1 hours 24 hours 48 hours 72 hours p-value

Arterial pH 7.27 (7.22-7.31) 7.37 (7.31-7.39) 7.32 (7.26-7.37) 7.33 (7.31-7.36) 7.33 (7.29-7.36) 0.05

PaCO2 mm Hg 60.5 (56-77) 49 (44-58) 54.5 (47-61) 53.5 (46-61) 54 (47-61) 0.031

PaO2 mm Hg 96 (79-121) 86.5 (81-96) 88 (82-106) 92 (81-97) 82 (73-92) 0.41

PaO2/ FiO2 ratio 146.5 (113-173) 114.5 (102-130) 115 (103-172) 134 (107-177) 132.5 (107-153) 0.22

Pplat cm H2O 30 (27-35) 25.5 (24-28) 27.5 (26-32) 27.5 (26-28) 27 (25-28) 0.001

VT ml/kg PBW 6.7 (6.1-6.9) 5.1 (4.2-5.6) 5.2 (4.5-6.0) 5.0 (4.2-6.1) 5.2 (4.3-6.1) <0.00012

PEEP estr cm H2O 11.5 (10-14) 14 (12-15) 13.5 (12-16) 14 (12-16) 14 (12-16) 0.03

PEEP tot cm H2O 12.5 (10-15) 14 (12-15) 14 (13-16) 14.5 (13-16) 14 (13-16) 0.01

Driving pressure cm H2O 17 (14-18) 11.5 (10-15) 13.5 (11-17) 12.5 (11-17) 11.5 (11-14) 0.00013

ComplianceRs cm H2O 26.5 (20-32) 25 (18-36) 25.5 (15-33) 29 (16-36) 30 (22-36) 0.13

Heparin IU/kg/h - 11 (10-13) 11 (11-13) 11.5 (10-14) 11 (10-14) 0.47

aPTTr sec 1.5 (1.2-1.8) - 1.8 (1.5-2.1) 1.8 (1.5-2.0) 1.9 (1.8-2.0) 0.02

D-dimer µg/mL 2.4 (1.1-3.2) - 1.3 (1.2-2.3) 1.7 (1.2-2.6) 2.0 (1.7-2.7) 0.97

MAP, mm Hg 70.5 (65-75) 70 (68-75) 68.5 (65-70) 72 (70-80) 75.5 (70-80) 0.08

Norepinephrine μg/kg/min 0.20 (0.06-0.52) 0.25 (0.10-0.55) 0.25 (0.10-0.60) 0.45 (0.10-0.70) 0.29 (0.08-0.50) 0.15

VT ml 440 (380-450) 290 (280-360) 325 (280-350) 315 (280-380) 315 (280-400) <0.00014

Vent/min L/min 15.1 (12.2-15.8) 9.8 (9-11.5) 10.7 (8.9-12.3) 10.8 (7.8-13.3) 11.1 (8.4-14.0) 0.00015
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treatment, respectively; while it was observed an aPT-
Tratio median value of 1.8 (1.5-2.1) and 1.9 (1.8-2.0) at 
24 and 72 hours of treatment, respectively. Technolo-
gies to remove CO2 applied to our patients were not 
equipped with systems to automatically measure CO2 
clearance by ECCO2R. The amount of CO2 removed 
by the oxygenator was measured through tests based 
on clinician requests using standard formulas [13]. In 
three patients, the CO2 cleaned by the artificial lung 
(ml/min) was calculated as the partial pressure of CO2 
of gases exiting the artificial lung (mmHg, measured 
by the capnograph, monitor IntelliVue MX750 with 
Microstream CO2 Extension®, Philips Medical Sys-
tems) divided by 713 mmHg, and multiplied by the gas 
flow value (ml/min).

During the first 72 hours of extracorporeal treat-
ment, analyses showed a constant CO2 clearance with 
a mean value of 101 ml/min (SD 11 ml/min) useful for 
VT reduction coupled in one case also to the respira-
tory rate limitation.

Overall patient’s ECCO2-R duration was 96 (63-120) 
hours and 96 (72-225) or 63 (24-120) in COVID-19 
negative or positive groups (p-value 0.37), respectively.

Outcome of patients
No statistically significant differences were recorded on 
treatment effects between patients with moderate ARDS 
with COVID disease and the control group in the pre-
pandemic period. MV, ICU length of stay (LOS) and Day-
28 mortality, are reported in Table 5.

Significant increase in PaO2/FiO2 ratio was detected 
in COVID-19 negative patients (242 {132-338} vs 102 
{57-141} p-value 0.04). No other significant differences 
in SOFA score at the end of ECCO2-R treatment were 
recorded. LOS in ICU (23.5 days {7-36} and day-28 mor-
tality {n = 8 (57.1%)} did not differ in the two groups.

Discussion
Severe critical illnesses, such as acute lung injury with 
acute respiratory distress syndrome as more severe sub-
set, as well as the need of CRRT to bridge organ dys-
function is a common experience for clinicians in ICUs 
to contrast increased mortality and morbidity; a similar 
scenario also occurred during the Covid-19 pandemic 
emergency.

The concept “positive pressure MV can save lives” was 
proved in the 1950s during the poliomyelitis epidemics, 

Fig. 1  PaCO2 median values by different time-points
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but the following development of critical care medicine 
demonstrated that ventilatory treatment could cause  
a form of injury known as ventilator induced lung 
injury (VILI) that is clinically indistinguishable from 
ARDS [1, 14, 15].

ARDS accounts for 10% of ICU admissions, and the 
overall ICU mortality ranges from 35% for mild ARDS to 
46% for severe ARDS [16].

Significant progress has been made in understanding 
the pathophysiology of this syndrome and the ability to 
recognize VILI has led to radical modifications of the 
ventilatory management with new ventilator modes and 
settings.

Several studies demonstrated that the main reason for 
high mortality (30%-50%) is not the severe hypoxemia 
but rather the multi-organ failure (kidney, heart, liver, 
etc.), potentially caused by inflammatory mediators due 
to and/or augmented by artificial ventilation that are 
delivered from the lungs through the systemic circula-
tion to peripheral organs. The use of high tidal volumes 
and high airway pressures has been shown to be delete-
rious for patient outcomes, and thus protective venti-
lation strategies, including lower tidal volumes and the 

new ultra-low volume protective MV, have been imple-
mented into clinical practice [3, 4, 17, 18].

In the past two decades studies have shown that lung 
hyperinflation still occurs in approximately 30% of 
ARDS patients even though they are being “correctly” 
ventilated using the ARDSNet strategy [19]. These 
investigations also suggested that some patients could 
benefit from a further reduction of VT even when Pplat 
is lower than 30 cmH2O [3, 20]. Bellani and coworkers 
assessed the intensity of pulmonary inflammation dur-
ing MV using positron-emission tomography imaging 
to detect the presence of metabolically active inflam-
matory cells. They showed that Pplat is significantly  
correlated with metabolic activity and this phenom-
enon sharply increases sharply above 26-27 cmH2O, 
thus suggesting that further limitation of ventilation to  
values of 25 cmH2O or lower may be associated with 
lower degree of pulmonary inflammation due to reduced 
VILI [8].

However, lower tidal volumes in clinical practice have 
been proved successful but can be extremely problem-
atic when dealing with respiratory acidosis. The imple-
mentation of extracorporeal CO2 removal technique 

Fig. 2  Pplat median values by different time-points
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can represent the missing link between prevention of 
VILI and pH control [4, 21, 22].

From the first pioneering ECCO2-R [23], the new 
treatments derived from ECMO support have seen 
increased interest being characterized by less invasive 
approaches with low flow devices allowing an easier 
management of ARDS patients to reach the ultra-pro-
tective ventilation characterized by VT < 6 mL/kg PBW 
and Pplat ≤ 25 cmH2O [4].

In the multicenter SUPERNOVA study, sponsored 
by the European Society of Intensive Care Medicine, 
Combes et  al. tried to assess safety and feasibility of 
ECCO2-R in ARDS [24].

More than 80% of patients with moderate ARDS 
might achieve ultraprotective ventilation goals by using 
ECCO2-R. In the study design authors used lower and 
higher CO2 extraction devices (membrane lung cross-
sectional area 0.59 vs. 1.30 m2; flow 300–500 mL/min 
vs. 800–1000 mL/min, respectively).

Efficacy and safety were higher for devices with 
higher blood flow and use of extracorporeal support 
allowed a reduction in VT from approximately 6 to 4 

mL/kg PBW with significant decrease in driving pres-
sure from 13 to 9 cmH2O.

The main result of the present study was a success-
ful achievement of the targeted driving pressure (≤ 
14 cmH2O) in all patients within the first 24 hours and 
maintained after 72 hours. Specifically in the group of 
patients with ARDS associated with COVID-19 the 
achievement of the targeted driving pressure and the 
protective mechanical ventilation was more effective 
and achieved in a shorter time if compared to the his-
torical control group where ARDS was not associated 
with COVID-19; as a matter of fact, in those patients the 
driving pressure at baseline was more severe (18 {14-24} 
cmH2O) compared to the historical group (15 {13-17} 
cmH2O) and the reduction after the first 24 hours was 
greater (11 {10-15} cmH2O vs 12 {10-16} cmH2O). In the 
SUPERNOVA study, the authors showed that only 64% of 
the patients treated with a low flow system achieved an 
ultra-protective mechanical ventilation with a Vt<4 ml/
kg*PBW and a Pplat < 25 cmH2O, compared to 92% of 
those who received a high flow system. Although, in our 
study we did not reach a Vt<4 ml/kg*PBW and a Pplat < 

Fig. 3  VT median values by different time-points
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25 cmH2O in the majority of our patients, especially in 
those with COVID-19, we showed that through a low 
flow device all patients achieved a protective ventilation 
strategy with a significant reduction of the driving pres-
sure ≤ 14 cmH2O, from 17 (14-18) to11.5 (11-14) cmH2O 
within the first 24 hours. However, the use of high flow 
devices in the SUPERNOVA trial allowed significant 
reductions in RR that our study was able to achieve 
only in one case. RR reduction is the limit of low flow 
ECCO2-R systems; a more protective ventilatory setting 
can only be achieved by increasing the flow.

Although the treatment did not affect 28 days mortal-
ity, duration of mechanical ventilation and ICU length of 
stay were higher in patients from the historical group of 
ARDS compared to COVID-19.

Acute kidney injury (AKI) afflicts a large number of 
ICU patients and carries high morbidity and mortality. In 
this scenario, ARDS patients with AKI have been shown 
to present significantly higher mortality than patients 
without AKI in several cohorts; AKI may develop in 
25%–60% of ARDS patients, commonly when sepsis is 
the underlying disease [5, 6].

According to the ARDSnet trial data base, among all 
participants enrolled who did not have end-stage renal 

disease, 24% developed AKI over the first four study days 
[5, 19]. In this context, MV is an independent risk factor 
for mortality in patients with AKI; likewise, the increase 
in plasma concentrations of inflammatory mediators and 
apoptosis of renal tubular cells are also associated with 
AKI [25]. Starting from these assumptions, recent studies 
have proposed the inclusion of ECCO2-R into the con-
ventional CRRT circuit to support lung and kidney func-
tions simultaneously [26–29].

A recent trial on ARDS patients demonstrated efficacy 
when applying CRRT plus ECCO2-R with ultra-protec-
tive ventilation to preserve renal function through atten-
uation of inflammation and apoptosis [7].

Since December 2019, the outbreak of coronavirus dis-
ease caused by SARS-CoV-2, has become one of the main 
causes of ARDS. Although both ARDS and COVID-19 
lung injury present with several pathophysiological fea-
tures such as gas exchange impairment, alveolar flood-
ing and vasculopathy, it has been showed that COVID-19 
lung injury involves direct viral damage and a host 
defense response with greater vasculopathy (macro- and 
micro thrombosis), endothelial cell injury, vascular dila-
tion, aberrant angiogenesis and inflammatory reactions 
with a particular tropism for cells where ACE2 receptor 

Fig. 4  Driving pressure median values by different time-points
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is expressed (lung, brain, heart, intestines, liver and kid-
ney) [30]. In COVID-19 patients, mainly for those who 
received MV, mortality ranged from 13% to 69% [31].

The mechanisms of AKI in COVID-19 could be multi-
factorial, due to cytokine damage, cardio-renal crosstalk, 
hypoxia, intra-abdominal hypertension, fluid imbalance, 
hypoperfusion, rhabdomyolysis-related tubular toxicity 
and endotoxin. Large studies on clinical characteristics 
of patients affected by coronavirus disease 2019 in China 
reported that prevalence of AKI was only 0.5% but severe 
cases showed higher percentage of AKI (23%) [32, 33].

Our study updates the new concepts on ultra-protec-
tive ventilation with the use of low flow CO2-Removal 
technique supported by CRRT both in standard ARDS 
with AKI during the pre-pandemic era as well as over the 
past three years, characterized by the known COVID-19 
infection disease.

In patients where both acute lung damage and AKI 
coexist, an oxygenator to remove CO2 could be imple-
mented with an hemofilter for CRRT, placed in series 
upstream or downstream position, combining both 
CO2 removal and hemodiafiltration technique for renal 
support.

However, data on these combined techniques are poor 
due to their complexity and due to the specific preroga-
tive of some referral centers and narrowness of indica-
tions, although during the last pandemic emergency an 
increased number of critically ill patients with SARS-
CoV-2 related pneumonia and extra pulmonary compli-
cations, including AKI, has been observed.

Therefore, our experience is here reported for the 
pre-pandemic period and over the past three years on 
COVID-19 patients with ARDS and AKI treated with a 
combination of CRRT and ECCO2R.

Even if limited to our restricted sample size, the 
reported data by comparing the presence and absence 
of the COVID pathology might be useful to bring out 
the applicability of the technique and its effectiveness in 
reducing CO2 levels to achieve less invasive and higher 
MV protection.

The new available technologies with integrated plat-
form have given comparable results in terms of efficacy 
in CO2 removal, pH control, reduction of lung volumes 
and ventilation pressures with adequate level of renal 
support; furthermore, the efficacy of extracorporeal 
treatments in our patients were constant over time (the 

Fig. 5  VT median values at baseline and at 72 hours
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Fig. 6  Driving pressure median values at baseline and at 72 hours

Table 3  Clinical characteristics at different time-points stratified by COVID-19 patients

a Quantitative variables were summarized as median and (IQR)

PaCO2 Partial pressure of arterial CO2, PaO2 Partial pressure of arterial O2, Pplat Plateau pressure, VT Tidal volume, PEEP Positive end-expiratory pressure (extrinsic or 
total); Driving pressure: driving pressure = Pplat minus PEEP; PaO2/FiO2 ratio: arterial-to-inspiratory oxygen fraction; MAP Mean arterial pressure

Covid-19 NEGATIVE (n=7)

Variables* Baseline 1 hour 24 hours 48 hours 72 hours p-value

Arterial pH 7.28 (7.24-7.32) 7.37 (7.30-7.43) 7.33 (7.29-7.39) 7.35 (7.32-7.47) 7.35 (7.31-7.42) 0.09

PaCO2 mm Hg 58 (54-72) 51 (44-56) 53 (47-64) 53 (47-61) 59 (53-61) 0.43

PaO2 mm Hg 119 (86-138) 87 (86-96) 106 (84-112) 95 (82-98) 81 (73-82) 0.08

PaO2/ FiO2 ratio 173 (140-225) 124 (107-201) 172 (116-235) 177 (131-204) 140 (130-202) 0.41

Pplat cm H2O 28 (22-30) 25 (22-30) 27 (24-32) 27 (24-30) 25 (24-29) 0.16

VT ml/kg PBW 6.7 (6.1-7.0) 4.5 (4.0-5.7) 5.2 (4.0-6.1) 4.7 (4.0-6.1) 4.7 (4.3-6.1) 0.003

PEEP estr cm H2O 11 (10-12) 12 (12-14) 12 (12-14) 13 (11-15) 13 (12-14) 0.16

PEEP tot cm H2O 12 (10-13) 13 (12-14) 13 (13-14) 14 (12-16) 14 (13-15) 0.18

Driving pressure cm H2O 15 (13-17) 12 (10-16) 14 (10-19) 14 (10-17) 11 (10-17) 0.03

ComplianceRs cm H2O 27 (20-40) 23 (18-36) 25 (13-43) 21 (15-42) 30 (14-43) 0.37

Heparin IU/kg/h - 10 (10-11) 11 (10-11) 11 (10-15) 11 (8-15) 0.39

D-dimer µg/mL 2.5 (1.1-3.8) - 1.3 (1.0-15.0) 1.2 (1.0-17.9) 1.8 (0.9-9.2) 0.60

MAP, mm Hg 70 (65-75) 70 (68-75) 68 (65-70) 72 (72-80) 80 (74-85) 0.03

Norepinephrine μg/kg/min 0.15 (0.06-0.50) 0.20 (0.08-0.50) 0.20 (0.08-0.60) 0.40 (0.08-0.70) 0.20 (0.06-0.30) 0.12

VT ml 440 (380-460) 280 (250-320) 300 (280-350) 280 (280-420) 300 (270-420) 0.004

Vent/min L/min 12.2 (11.0-16.1) 9.0 (7.5-11.2) 9.8 (6.9-12.3) 9.8 (5.0-14.7) 10.5 (5.6-14.7) 0.06
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membrane maximum duration was manufacturer-deter-
mined to reach 72 hours).

In the SUPERNOVA study, authors demonstrated 
notable results with low incidence of adverse events 
(2%) [24]. In our study, despite the presence of coagula-
tion disorders in the group of COVID-19 patients and 
the need of heparin treatment, we observed few side 

effects (i.e., two cases of circuit clotting and one case 
of pump malfunction). In addition, the combination of 
CRRT+ECCO2R was tested, changing the circuit, when 
necessary, over a 72-hour period in patients who failed 
the weaning from extracorporeal lung support.

Reasoning should be spent on one case, in which 
ECCO2R allowed an effective decrease of RR and ven-
tilation flow.

Table 4  Clinical characteristics at different time-points stratified by COVID-19 patients

a Quantitative variables were summarized as median and (IQR)

PaCO2 Partial pressure of arterial CO2, PaO2 Partial pressure of arterial O2, Pplat Plateau pressure, VT tidal volume, PEEP Positive end-expiratory pressure (extrinsic or 
total); Driving pressure: driving pressure = Pplat minus PEEP; PaO2/FiO2 ratio: arterial-to-inspiratory oxygen fraction; MAP Mean arterial pressure

Covid-19 POSITIVE (n=7)

Variablesa Baseline 1 hour 24 hours 48 hours 72 hours p-value

Arterial pH 7.24 (7.22-7.31) 7.37 (7.34-7.38) 7.26 (7.24-7.35) 7.32 (7.20-7.35) 7.29 (7.27-7.35) 0.24

PaCO2 mm Hg 67 (57-85) 47 (43-61) 55 (44-61) 54 (44-65) 54 (44-66) 0.06

PaO2 mm Hg 85 (79-117) 85 (78-96) 84 (72-91) 82 (69-95) 92 (72-107) 0.77

PaO2/ FiO2 ratio 113 (107-156) 106 (87-128) 103 (87-114) 131 (72-137) 113 (72-141) 0.57

Pplat cm H2O 34 (30-35) 26 (24-28) 28 (27-32) 28 (27-28) 27 (26-28) 0.006

VT ml/kg PBW 6.5 (6.0-6.7) 5.2 (4.2-5.6) 5.1 (4.5-5.6) 5.1 (4.2-6.2) 5.2 (4.2-6.2) 0.0005

PEEP estr cm H2O 14 (10-15) 14 (11-15) 15 (10-16) 15 (12-16) 15 (12-16) 0.27

PEEP tot cm H2O 14 (11-16) 15 (11-15) 16 (12-17) 16 (13-17) 16 (13-17) 0.04

Driving pressure cm H2O 18 (14-24) 11 (10-15) 12 (11-17) 12 (11-17) 12 (11-13) 0.004

ComplianceRs cm H2O 25 (18-29) 27 (17-40) 29 (15-33) 32 (16-35) 32 (22-36) 0.37

Heparin IU/kg/h - 13 (11-13) 13 (11-14) 12 (10-14) 11 (10-12) 0.36

D-dimer µg/mL 2.4 (1.2-2.7) - 1.3 (1.2-2.3) 1.9 (1.6-2.6) 2.4 (2.0-2.7) 0.32

MAP, mm Hg 71 (65-75) 70 (65-70) 70 (65-75) 70 (65-84) 75 (68-77) 0.85

Norepinephrine μg/kg/min 0.30 (0.00-0.60) 0.30 (0.10-0.60) 0.35 (0.10-0.70) 0.50 (0.10-0.70) 0.50 (0.20-0.70) 0.08

VT ml 440 (370-450) 300 (280-400) 330 (290-360) 342 (280-380) 356 (280-400) 0.0005

Vent/min L/min 15.4 (13.0-15.8) 10.5 (9.2-14.0) 11.2 (8.9-12.6) 11.2 (7.8-13.3) 11.5 (8.4-14.0) 0.001

Table 5  Patients’ outcome

a Quantitative variables are summarized as median and (IQR)

ICU Intensive care unit, ECCO2R Extracorporeal carbon-dioxide removal, SOFA sequential organ failure assessment, PaO2/FiO2 Ratio of arterial-to-inspiratory oxygen 
fraction, GCS Glasgow coma score

Variablesa All sample
(n= 14)

COVID-19 negative (n= 7) COVID-19 positive (n= 7) p-value

Mechanical ventilation (days) 23.5 (7-33) 24 (22-38) 19 (7-29) 0.24

ICU length of stay (days)sa 23.5 (7-36) 24 (22-78) 19 (7-29) 0.25

Day-28 mortality, n (%) 8 (57.1) 4 (57.1) 4 (57.1) 1.00

SOFA parameters at the end of ECCO2R
SOFA total score 8.5 (8-11) 9 (8-9) 8 (6-12) 0.92

GCS 14 (14-15) 14 (7-14) 15 (14-15) 0.08

PaO2/FiO2 ratio 133 (100-242) 242 (132-338) 102 (57-141) 0.04

Mean Arterial Pressure, mm Hg 70.5 (68-75) 70 (68-75) 71 (65-75) 0.76

Creatine kinase, mg/dL 1.09 (0.66-1.59) 0.92 (0.68-1.36) 1.26 (0.51-1.62) 0.83

Platelet count, x 109 per L 196 (130-320) 133 (106-320) 315 (188-329) 0.25

Total bilirubin, mg/dL 0.70 (0.50-1.30) 0.70 (0.60-1.00) 0.50 (0.40-3.50) 0.59
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Figure  7 shows exemplary time courses for clinical 
effects of low-flow CO2 removal in a patient with mod-
erate ARDS due to pneumonia presenting favorable 

response to treatment with ECCO2-R with sequential 
option for RR and flow reduction.

One of the first studies on correlation between RR and 
lung injury was proposed by Hotchkiss, et al. in an animal 

Fig. 7  Exemplary time courses for clinical effects of low-flow CO2 removal in patient with moderate ARDS due to pneumonia. A favorable 
response to ECCO2R treatment with sequential option for RR reduction. Figures represent three conditions: the first shows a standard treatment 
with ARDS net protocol application; the second shows an ultra-protective strategy (Ultra low Vt and high RR) supported by ECCO2R; the third 
illustrates a strategy coupling low Vt and low RR with ECCO2R support. In the two cases supported by extracorporeal support the values of PEEP 
were increased to reduce conditions of opening-closing avoiding hyperinflation. From top to bottom: tracings of flow, volume, airway, esophageal 
and transpulmonary pressure. Paw = airway pressure; Pes = esophageal pressure; PL = transpulmonary pressure
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model where the decrease in RR enabled to diminish the 
severity of VILI through lessening edema formation and 
perivascular hemorrhage [34]. According to the authors, 
although drawing parallels between the experimental set-
ting and clinical practice was clearly hazardous, it was 
conceivable that in the early ARDS phase, similar mecha-
nisms might occur.

Recently, Grasso et al., demonstrated on an experimen-
tal ARDS model that a low RR plus ECCO2R decrease 
systemic and pulmonary inflammatory mediators [35].

In the latter study, new concepts on pulmonary protec-
tion suggest considering other components of mechani-
cal power contributing to negative or positive effects on 
lung mechanics, such as the RR or the flow to gener-
ate low VT. On this topic Rich et  al. demonstrated that 
decreasing RR mitigates VILI only if the inspiratory flow 
rate decreases at the same time [36].

The continuous technological evolution with less inva-
sive and more biocompatible extracorporeal circuits 
alongside with the new small artificial lungs increasingly 
performing with constant functions in CO2 clearance 
over time are changing our approach to extracorporeal 
treatments in moderate ARDS patients. Therefore, the 
opportunity in terms of lung protection to couple differ-
ent elements such as low VT, driving pressure, Pplat and 
low RR in few cases (as for the exemplary time course 
reported) might provide clinicians with new strategies 
based on physiological evidence derived by research on 
animal models that once translated to pathological con-
ditions might clarify the rationale behind its clinical 
application.

Our study has some limitations. The population 
enrolled was small and limited to patients who presented 
with moderate ARDS condition (even if PaO2/FiO2 ratio 
was less than 150 mm Hg) during the early phase of the 
renal disease requiring CRRT initiation. Given that the 
sample was not representative of specific stages of renal 
disease, extrapolating results to compare to other condi-
tions requires caution.

Although our ICU represents the regional reference 
center for respiratory failure, the specific population 
enrolled is limited; thus, we had to extend the analysis to 
a three-year period to reach two comparable patient sam-
ples for the pre- Covid 19 period and for the Covid-19 
pandemic emergency period.

Conclusions
In moderate ARDS patients with or without COVID-19 
disease presenting with respiratory acidosis during pro-
tective MV, ECCO2R+CRRT may be an effective sup-
portive treatment to reach protective values of driving 
pressure unless severe oxygenation defects arise requir-
ing ECMO therapy initiation.

Although the physiological bases of CO2 removal 
have been translated to pathological conditions, a 
reappraisal of the effects of ECCO2R and the potential 
crosstalk between lung and kidney might help clinicians 
to clarify the rationale behind its clinical application.

Further evidence from randomized clinical trials 
and/or high-quality prospective studies are warranted 
to better guide clinicians during the decision-making 
process.
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